• Title/Summary/Keyword: robust output tracking

Search Result 89, Processing Time 0.033 seconds

A Robust Speed Control of SR Motor Using Error.Feedback Nonlinear Compensator (오차.되먹임 비선형 보상기를 이용한 SR 모터의 견실한 속도 제어)

  • Lee, Tae-Gyoo;Huh, Uk-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.318-323
    • /
    • 1996
  • The speed of SR(Switched Reluctance) motor can be controlled by switching angle. However, since the relation between speed and switching is nonlinear, it is difficult for simple adjustment schemes to achieve the desired performances. In this paper, an error.feedback nonlinear compensator with robustness is proposed for improving the performances of the switching angle controlled SR motor. The proposed controller consists of integral type control and relay type control. The integral type controller which operates regulation, is derived by the steady.state I/O(input/output) map and the relay type controller which works tracking, is designed by Lyapunov stability theory. The validities of the proposed controller are confirmed with the experimental results.

  • PDF

Digital State Feedback Control for a Single/Parallel Module Buck Converter Using the Pole Placement Technique

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.31-33
    • /
    • 2007
  • In this paper, a simple digital control scheme for the single/parallel module buck converters is proposed using a digital state feedback control method. The discrete state feedback controller structure for the robust tracking control is derived by using the error state. The proposed control system can precisely achieve the interleaved current sharing and the output regulation, and can achieve the systematical controller design for a given converter specification using the pole placement technique. For a design example, the single module buck converter is simulated using the MATLAB Simulink software and two 100W parallel module buck converters with a TMS320F2812 DSP is implemented.

  • PDF

Nonlinear Control of Chua's Diode (Chua다이오드의 비선형제어)

  • Lim, So-Young;Lee, Ho-Jin;Lee, Jung-Kook;Kim, Seung-Roual;Lee, Keum-Won;Lee, Jun-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.285-287
    • /
    • 2006
  • The paper treats the nonlinear robust control of Chua's circuit having Chuar's diode as an element based on the internal model principle. The Chua's diode has unknown nonlinear parameters and the circuits parameters are alos assumend unknown. Nonlinear regulator equations are established to obtain 3-fold equilibrium equations on which the output error is zero. Also an internal model of the 3-fold exosystem is constructed for obtaining the control law. Pole Placement method is used for obtaining the feeback control law. Simulation results are presented for tracking the sinusoidal and constant reference input signal. Asymptotic trajectory control and the suppression of chaotic motion in spite of uncertainties in the system are accomplished.

  • PDF

Design of an Adaptive Fuzzy Controller and Its Application to Controlling Uncertain Chaotic Systems

  • Rark, Chang-woo;Lee, Chang-Hoon;Kim, Jung-Hwan;Kim, Seungho;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.95-105
    • /
    • 2001
  • In this paper, in order to control uncertain chaotic system, an adaptive fuzzy control(AFC) scheme is developed for the multi-input/multi-output plants represented by the Takagi-Sugeno(T-S) fuzzy models. The proposed AFC scheme provides robust tracking of a desired signal for the T-S fuzzy systems with uncertain parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the chaotic state tracks the state of the stable reference model(SRM) asymptotically with time for any bounded reference input signal. The suggested AFC design technique is applied for the control of an uncertain Lorenz system based on T-S fuzzy model such as stabilization, synchronization and chaotic model following control(CMFC).

  • PDF

Robust Linear Tracking Controller Design for Manipulators Using Only Position Measurements (각도 측정치만을 이용한 로봇을 위한 강인한 제어기 설계)

  • Choi, Han-Ho;Yi, Hyung-Kyi;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.347-350
    • /
    • 1992
  • In this note, we propose a method for designing a robot controller which can suppress the effects of both the model uncertainty and noisy velocity measurements. The controller is an output feedback compensator of which the constant gains are given in terms of a Riccati equation and a Lyapunov equation. The controller guarantees not only uniform boundedness but uniform ultimate boundedness. The stability result is local but the region can be arbitrarily enlarged at the expense of large control gain. The control law needs neither the exact knowledge of the physical robot parameters nor clean velocity measurements.

  • PDF

Variable structure control of robot manipulator using neural network (신경 회로망을 이용한 가변 구조 로보트 제어)

  • 이종수;최경삼;김성민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.7-12
    • /
    • 1990
  • In this paper, we propose a new manipulator control scheme based on the CMAG neural network. The proposed control consists of two components. The feedforward component is an output of trained CMAC neural network and the feedback component is a modified sliding mode control. The CMAC accepts the position, velocity and acceleration of manipulator as input and outputs two values for the controller : One is the nominal torque used for feedforward compensation(M1 network) and the other is the inertia matrix related information used for the feedback component(M2 network). Since the used control algorithm guarantees the robust trajectory tracking in spite of modeling errors, the CMAC mapping errors due to the memory limitation are little worth consideration.

  • PDF

Design Robust Fuzzy Model-Based Controller for Uncertain Nonlinear Systems (불확실 비선형 시스템을 위한 강인한 퍼지 모델 기반 제어기)

  • Joo, Young-Hoon;Chang, Wook;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.407-414
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex uncertain single-input single-output nonlinear systems. The proposed method represents the nonlinear system using a Takagi-Cugeno fuzzy model and construct a global fuzzy logic controller by blending all local state feedback controllers with a sliding mode controller. Unlike the commonly used parallel distributed compensation technique, we can design a global stable fuzzy controller without finding a common Lyapunov function for all local control systems, and can obtain good tracking performance by using sliding mode control theory. Furthermore, stability analysis is carried out not for the fuzzy model but for the real nonlinear system with uncertainties. Duffing forced oscillation sysmte is used as an example to show the effectiveness and feasibility of the proposed method.

  • PDF

Two-Link Manipulator Control Using Indirect Adaptive Fuzzy Controller

  • N., Waurajitti;J., Ngamwiwit;T., Benjanarasuth;H., Hirata;N., Komine
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.445-445
    • /
    • 2000
  • This paper proposes the MIMO indirect adaptive fuzzy controller to control the two-link manipulators. The input-output linearization technique, equivalent control input plus integral term, augmented error model and recursive least square adaptive law are used fer the controller. The linear type of fuzzifier-defuzzifier fuzzy logic system used for nonlinear function makes easy to farm the error model and able to follow the adaptive system approach. Such that control approach, the control system is not required joint speed and accerelation measurement and easy to implement and tune. The simulation results showed that the proposed controller has good control performance, stability, very small tracking error, decoupling, fast convergence, robust to parameter variation and load.

  • PDF

Implementation of Self-adaptive System using the Algorithm of Neural Network Learning Gain

  • Lee, Seong-Su;Kim, Yong-Wook;Oh, Hun;Park, Wal-Seo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.453-459
    • /
    • 2008
  • The neural network is currently being used throughout numerous control system fields. However, it is not easy to obtain an input-output pattern when the neural network is used for the system of a single feedback controller and it is difficult to obtain satisfactory performance with when the load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object for control and an algorithm for this, which can replace the existing method of implementing a neural network controller by utilizing activation function at the output node. The real plant object for controlling of this mode implements a simple neural network controller replacing the activation function and provides the error back propagation path to calculate the error at the output node. As the controller is designed using a simple structure neural network, the input-output pattern problem is solved naturally and real-time learning becomes possible through the general error back propagation algorithm. The new algorithm applied neural network controller gives excellent performance for initial and tracking response and shows a robust performance for rapid load change and disturbance, in which the permissible error surpasses the range border. The effect of the proposed control algorithm was verified in a test that controlled the speed of a motor equipped with a high speed computing capable DSP on which the proposed algorithm was loaded.

Hand Gesture Recognition Algorithm Robust to Complex Image (복잡한 영상에 강인한 손동작 인식 방법)

  • Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1000-1015
    • /
    • 2010
  • In this paper, we propose a novel algorithm for hand gesture recognition. The hand detection method is based on human skin color, and we use the boundary energy information to locate the hand region accurately, then the moment method will be employed to locate the hand palm center. Hand gesture recognition can be separated into 2 step: firstly, the hand posture recognition: we employ the parallel NNs to deal with problem of hand posture recognition, pattern of a hand posture can be extracted by utilize the fitting ellipses method, which separates the detected hand region by 12 ellipses and calculates the white pixels rate in ellipse line. the pattern will be input to the NNs with 12 input nodes, the NNs contains 4 output nodes, each output node out a value within 0~1, the posture is then represented by composed of the 4 output codes. Secondly, the hand gesture tracking and recognition: we employed the Kalman filter to predict the position information of gesture to create the position sequence, distance relationship between positions will be used to confirm the gesture. The simulation have been performed on Windows XP to evaluate the efficiency of the algorithm, for recognizing the hand posture, we used 300 training images to train the recognizing machine and used 200 images to test the machine, the correct number is up to 194. And for testing the hand tracking recognition part, we make 1200 times gesture (each gesture 400 times), the total correct number is 1002 times. These results shows that the proposed gesture recognition algorithm can achieve an endurable job for detecting the hand and its' gesture.