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Design of an Adaptive Fuzzy Controller and Its
Applications to Controlling Uncertain Chaotic Systems

Chang-Woo Park, Chang-Hoon Lee, Jung-Hwan Kim, Seungho Kim, and Mignon Park

Abstract: In this paper, in order to control uncertain chaotic system, an adaptive fuzzy control(AFC) scheme is developed for
the multi-input/multi-output plants represented by the Takagi-Sugeno(T-S) fuzzy models. The proposed AFC scheme provides
robust tracking of a desired signal for the T-S fuzzy systems with uncertain parameters. The developed control law and adaptive
law guarantee the boundedness of all signals in the closed-loop system. In addition, the chaotic state tracks the state of the
stable reference model(SRM) asymptotically with time for any bounded reference input signal. The suggested AFC design technique
is applied for the control of an uncertain Lorenz system based on T-S fuzzy model such as stabilization, synchronization and

chaotic model following control(CMFC).
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I. Introduction

Many nonlinear systems have been shown to exhibit
chaotic dynamics as well as period oscillations. A chaotic
system is a nonlinear deterministic system which is very
sensitive to small perturbation in its initial condition and its
long time behavior is unpredictable. Although the model
description of some chaotic systems is simple, the dynamic
behavior is very complex. Since the research of Oftt,
Grebogi and Yorke(OGY)[1], many researchers have
managed to use modern elegant theories to control chaotic
systems, most of them based on exact chaotic model. Linear
state feedback[2] is very simple and easily implemented for
the nonlinear chaotic systems. The Lyapunov-type
method[3] is a more general synthesis approach for
nonlinear controller design. The feedback linearization[4]
technique is an effective nonlinear geometric theory for
nonlinear chaos control. However, if the chaos system is
partly known, for example the differential equation of it is
known but some or all of the parameters are unknown, these
exact model based control methods may be infeasible.
Recently it has been shown that it is possible to solve the
problem of controlling chaos by using an appropriately
chosen adaptive strategy[5][6]. On the other hand, an
intelligent modelling and control methodology for chaotic
system such as fuzzy logic or neural network have received
an increasing interest[7][8]. K.Tanaka et al. derived the
fuzzy models for various chaotic system and designed the
fuzzy model based controllers for controlling chaotic fuzzy
system such as stabilization, synchronization and chaotic
model following control(CMFC) problems in [8]. However
there are some drawback to these kinds of techniques, lack
of consideration of parameter uncertainties in the fuzzy
model. 1t is difficult to identify chaotic system exactly via
fuzzy logic because the dynamics of chaos are very fast and
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some small perturbation in parameters leads to different
chaotic behavior. Hence, in this paper, we will tackle the
problem of controlling chaotic system with uncertainties and
propose a complete solution to it.

Fuzzy logic controllers are generally considered
applicable to plants that are mathematically poorly
understood and where the experienced human operators are
available. However, the fuzzy control has not been regarded
as a rigorous science due to the lack of the guarantee of the
global stability and acceptable performance. To overcome
this drawback, since Takagi-Sugeno(T-S) fuzzy model
which can express a highly nonlinear functional relation in
spite of a small number of fuzzy implication rules was
proposed in [9], there have been significant research on the
stability ~analysis and systematic design of fuzzy
controllers[10][11]. In their research, the nonlinear plant is
represented by a T-S fuzzy model and the control design is
carried out based on the fuzzy model via the so-called
parallel distributed compensation(PDC) scheme[!10]. The
main idea of the PDC fuzzy controller design is to derive
each rule to compensate each rule of a T-S fuzzy system.
In literature [11], the stability analysis and design of the
fuzzy control system using PDC fuzzy controller were cast
to linear matrix inequality(LMI) problems and much
systematic design of the fuzzy controller can be possible.

In order to deal with the uncertainties of nonlinear
systems, in the fuzzy control system literature, a consid-
erable amount of adaptive schemes have been suggested
[12]-[18]. An adaptive fuzzy system is a fuzzy logic system
equipped with an adaptive law. The major advantage of
adaptive fuzzy controller over the conventional adaptive
fuzzy controller is that the adaptive fuzzy controller is
capable of incorporating linguistic fuzzy information from
human operators. However most of them have considered
only SISO plants and a complete analysis of the adaptive
control problem for T-S fuzzy model has been given only
in a few cases[15][16]. An adaptive scheme for the control
of uncertain SISO plants whose structure was represented by
T-S fuzzy model[16] and an indirect adaptive controller
based on T-S model using feedback linearization
scheme[15] have been presented. In this paper, to control
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the uncertain chaotic system with not only single input but
also multi input, we present alternative adaptive fuzzy
controller(AFC) for MIMO plants subjected to parameter
uncertainties. We utilize T-S fuzzy model for uncertain
chaotic system and PDC as the basis of our control scheme
which is different structure from those used in the above
studies based on T-S fuzzy model. In contrast to the
existing PDC of which structure has only state feedback
gain, we present extended PDC with feedback and
feedforward gain for tracking problems and the adaptation
law for adjusting the parameters in feedback and
feedforward gain of it is designed so that the plant output
tracks the stable reference model(SRM) output. Since the
extended PDC adopted in this paper has the structure in
which the state feedback and reference input forwarding are
performed, we can consider the reference input which makes
the reference model follow the desired model. The
developed control law and adaptive law guarantee the
boundness of all the signals in the closed loop system. In
addition, the plant state tracks the state of the reference
model asymptotically with time for any bounded reference
input signal.

The effectiveness of the suggested approach to controlling
chaos via T-S fuzzy model and adaptive scheme is
illustrated by its implementations to a Lorenz system with
multi-input. The proposed controller is applied not only to
robust stabilization and synchronization but also to the
chaotic model following control(CMFC) of the chaotic
system with parameter uncertainties.

II. Takagi-Sugeno model based fuzzy control

Consider a continuous-time nonlinear system described by
the T-S fuzzy model[9]. The ith rule of a continuous-time
T-S model is of the following form.

R': If x(§ is Mi and - and (8 is M, )
then 2D = A; x(8) + Bu(D .

where R'(i=1,2,+,[) denotes the th implication,
! is the number of fuzzy implications, Mj- are fuzzy sets
and

27D = [x(D, %D, -, xa(D]

w () = Lug (D), us(D), =, um(D .

Given a pair of input (x(#, wu(9), the final output of
the fuzzy system is inferred as follows:

C ZBwdd(Ax()+ Buh)
i) = -5 , @
wid

where wi(f) = In[l Mi(x(9), Mi(x(d) is the grade of
~

membership of x(# in M. and it is assumed that

xZw,—(t) >0, wdt) 20, for i=1,2,-,1.

In order to design fuzzy controllers to stabilize the fuzzy
system (2), we utilize the concept of PDC[10]. The PDC
fuzzy controller shares the same fuzzy sets with fuzzy
model (2) to construct its premise part. That is, the PDC
fuzzy controller is of the following form.

R If () is M and - and x,(8) is M, 3)
then u(f) = —K,;x(8),

where x” (D =[x,(9), 2(D), =, 2,(D],

w' () = [uy (D), u(d), -, u,(H] and
i=1,,1.
Given a state feedback x(#) , the final output of the PDC
fuzzy controller (3) is inferred as

w0 KO
o= lei(t) ’

where

wld = ]l Mi(x(D) . 4)

By substituting the controller (4) into the fuzzy model
(2), we can construct the closed-loop fuzzy control system
as the following equation.

) 2 3w D) (A~ B.K (D) N
T 2, 2wk duld -

A sufficient condition for ensuring the stability of the

closed-loop fuzzy system (5) is given in Theorem 1, which
was derived in [10].
Theorem 1-Stability of T-S fuzzy system: The equilibrium
of a fuzzy control system (5) is asymptotically stable in the
large if there exists a common positive definite matrix P
such that

GZP + PGii = - Qij s (6)

forall 4, ;=1,2,--,1
where G; = A;—B,/K; and @Q; is a symmetric positive
definite matrix.

The design problem of model based fuzzy control is to
select K; (j=1,2,---,) which satisfy the stability
conditions(6). In [11], the common P problem was solved
efficiently via convex optimization techniques for LMI's.

III. Adaptive control based on T-S fuzzy models

In this section, we present a model reference AFC
scheme for T-S system with multi-input/multi-output.
Consider the following nonlinear plant represented by the
T-S fuzzy model
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ﬁw(x)(A 2+ B,u)
x = , @)
ﬁ;w(x)

where state xe R® is available for measurement,
A,eR™", B,eR™‘ (i=1,--,)) are unknown
constant matrices and (A;, B) are controllable. The

control objective is to choose the input vector ue R? such
that all the signals in the closed-loop plant are bounded and
the plant state x follows the state x, = R" of a stable
reference model(SRM) specified by the system

i“i;w(x)#,(x){(A )i xm+(B )57}

e 2210(:6)#(96) - ®

where (A,);eR™” (i,j=1,--,]) satisty the stability
condition of fuzzy system given in Theorem 1, i.e., there
exists a common symmetric positive definite matrix

P=P"y(0 such that (A,)ITP+P(A,);= —Q; for
Q;=Q;>0, (Byz;eR™ and re R’ is a bounded

reference input vector. The SRM and input » are chosen

so that x,(# represents a desired trajectory that x has
to follow.
1. Control law

We design the control law as the following using PDC
conception.

R': If x;(§) is M} and - and x,(8) is M, )
then u(t) = —K; x(H+L; (¥

where " (H=[2,(0), %(D), -, 2,(D],

r (D=[r(D, (), x,(H] and
=1, 1 .
It can be inferred as
2#,( (-K;x+L; 7

u = . (10)
Sk

where p(x) = wyx). If the matrices A;, B; were
known, we could apply the control law and obtain the

closed-loop plant
ﬁ“#,( 2(—K; x+L}7)
gwi( x)NA;x+ B;-=

. ]Z#,-( x)
x =

2 Sl uf®) (A~ B.K)x+ B Li7)

;; wi x)#j( x)
an

Hence, if Kje R*"", and L} e R?? are chosen to

satisfy the algebraic equations

A,‘ — B,K; = (Am);‘j,B{L;‘ = (Bm)ij- (12)

then the transfer matrix of the closed-loop plant is the same
as that of the SRM and x(#) — x,(#) exponentially fast
for any bounded reference input signal »7(#) .

However, the design of the control parameters is not
possible for the systems whose parameters are unknown. To
overcome this drawback, in this research, following AFC is
developed for the plant models of which parameters are
unknown,

Sl =KD 2+ LD 7
= = , (13)

where, K{(#), LAf) are the estimates of K;, L],
respectively, to be generated by an appropriate adaptive law.
2. Adaptive law )

By adding and subtracting the desired input term
multiplied by B;, namely,

Bk N~ BAG 2= Lin) [ ek ).

in the plant equation(17) and using (12), we obtain

s; (olaren 5 Igp,-(x)(—K}x+L,'» r+K;x—Lj7)
wl x, X ; u+ By
= Ig#,‘( x)

2w x)

2 Rl DD (A BEG)e+ BiLir + B x=Lj r+ w)

2, wi x)pe( x)

:2141,(1:)#,(1) (A,,,),, 221»(::)#,(::) (Buw)ii
22W(x)ﬂ,(x) 22Liw(x)u,(x) T4

wl ®) pfx) Bi(K; x—L; r+ u)
ggwi( ©plx)

Furthermore, by similar adding and subtracting the
estimated input term multiplied by i“wiBi/ Z[wi,

namely, adding
’;wiBi E#,( D (KD x— LD )}

S Sk ) T

in the SRM (8), we obtain

) 21w Dud2) (A . s;i;W(x)#(z)(B) ,

2 Sl Do) 33 el D)

gwi(x)#,(x) Bi(K,(Hh x— LD r+ w)
==

; ,2 wl x)p,( %)

By using (14) and (15), we can express the equation of the

"

s5)

tracking error defined as e2 x— x,,, i€,

Zi,; w{ D ufx) (An);

,Z},g wi x)p( x)

22w(x)p,(x)3 (~ Byx+ L9

o 2 SwdDuk2)

e =

(16)
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o~ »

where K;=K{(H — K; and T,=L«(» — L

In the dynamic equation (16) of tracking error, B, are
unknown. Hence, we assume that L] are either positive
L;sgn(l),
where [;=1 if L] is positive definite and ;= —1 if
(B,);L;" and (16)

definite or negative definite and define Ij! =

L; is negative definite. Then B, =
becomes

SN,

2 w2l )
2:w(1)u,(x)(B Vil TN - Kix+ L7

i‘i 210 L2 x)

Now, by using the tracking error dynamics (17), we
derive the adaptive law for updating the desired control

€ (17)

parameters Kj, L; so that the closed-loop plant model

(14) follows the SRM (8). We assume that the adaptive law

has the general structure
K{(t) = F(%x, xn, e, 9, L; = G(x, 2, e, 7), (18)

where F; and G, (i=1,
signals that are to be chosen so that the equilibrium

-,)) are functions of known

Kie=K;,Li,=1Lj, e.= 0. (19)
We propose the following Lyapunov function candidate
V( e, Rj: [:) (20)

= e'Pe+ 5_’1 m R;'IR+ L;'rL),

=
where P= PT>( is a common positive definite matrix of
the Lyapunov equations
(ADP+P(A ;= —Q;
for Q;=Q;>0 (i,j=1,-.D,

whose existence is guaranteed by the stability assumption
for A, and #1{-) denotes the trace of a matrix ( -).

Then, the time derivative ¥V of V along the trajectory of
(17), (18) is given by

V = & Pet+ & Pet 2 2 R Ri+2 L' 1)

{ 2 3wl D0 (4.,

ﬁ; ﬁw(x)u,(x)

Ziwu)ﬂ,(x)wm),,v N Rt o)

ﬁ 5:1"” L) %)
gg\wf(")#;(x) (An)s
[

> Siwk Dl

3 2wk Duf D (BL (— Kyxt T,

z"l ,Z; wl{ Dy x)

Pe

+ eTP

2”(2 R k+2Lr [
2i‘,w,<x)u<x){(Am),, P+P(A,);)

i“ 2%0 L2 x) ¢

i; w{Dpl0) (B,);L; (- Kix+ L;»)
AL

T
o ,g]; w{ ) x)

: Zwi(x)uf(x)(— KT T LB LY
=1/=

+ ,Z; ,g wl{ Dpi x) Pe

4 ,Z; 2 B B2 57T )

r lg;wi(x)#j(x) Qi .

2w Du )

wl ) (%) (B Li ! K;
+ 2 eTP _ lgé e x
2 wil %) x)

+

=

=

i Frukn(a B, L T
2 B wd D)

+2 3 o BT R+ LT 1) e

r

By using the following properties of trace to manipulate (21),

i) tr (AB) = tr (BA)

iy tr(A+B) = tr(A) + tr(B)
A, B eRnxn

iii) tr(y 2" = x7Ty for any x, y € R™},

for any

we have

2ﬁqw(x>u,<x> (B, L K,
d ﬁ:wu)/z, (x) *
> Rwd D) ulx) K, T{B,)Fsen(l)
PP

- IPIENE be

| B Dn0 BB en)

ﬁ;ﬁ‘lw(x)ﬂ,(x) Fex

T

(22)
and

i‘liwu)y,(x) By L T
22w(x)u,(x)

r ,Z},gwf(x)m(x) LT{B,) [ sgn(1)
- 2 S Rud re
:200,(1)#,(::) LT{B,) ¥ sen(1)

IPIIEIE

r

T

Pe r

H

(23)
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By substituting (22) and (23) into (21), we obtain

Ve — T,g]gw,-(x)#i(x)%
) ,Z‘[;wi(x)pi(x) €

B g; wi 2) {2 K, T{B,) sgn(l)
12; ,21 wi2)px)

T
Pe x

+2 tr]

+ R KT k)
;,Z wi( %) e x) z;TPj(Bm),-,T‘Sgn( A

e ;;w;(x)u;(x) Fer
+)Z[ LT, t;} .

T

In the last two terms of (24), if we let

g;ziwi(x)”f(x) K,'T{(B,)] sen(])

> BT & = Pe .
~ ,Zl,g wl{ Xl x)
(25a)
T T
b g S5 un DBt o
~ 2 Suduf2)
(25b)
we can make V to be negative, ie.,
2 ng( x)#j(x) Qi,'
== (26)

77— — ol
V ) z:l,gwi(x)ﬂj(x) e <0.

Hence, the obvious choice for adaptive law to make V
negative is

202 1 2) (B Fsen 1)

K= K(p = Pe x”
,glg; wi( X)/lj( x) (273)
wx(Bm)g‘ .
= Z; £ sgn(l,-)PexT,
= Wi ’gl‘j
NN Sl DD BTenl)

2 SwkDulD) Per'  (27b)

_ gwi(Bm)i;T' “;
5

Wi

Note that all the quantities in the right-hand sides of
(27a) and (27b) are known or available for measurement.
Therefore, the adaptive law (27) for model reference AFC
of T-S fuzzy system can be implementable.

Using arguments previously discussed, we establish the
following theorem which shows the properties of the AFC
derived in this section. The control law (13) together with
the adaptive law (27) guarantee boundedness of all the
signals in the closed-loop system. In addition, the plant state
x tracks the state of the SRM, x,, asymptotically with
time for any bounded reference input signal .

sgn(l) P e ",

i=

Theorem 2: Stability of the AFC scheme for T-S fuzzy
model: Consider the plant model (7) and the reference fuzzy
model (8) with the control law (13) and adaptive law (27).
Assume that the reference input » and the state x,, of
the SRM are uniformly bounded. Then the control law (13)
and the adaptive law (27) guarantee that

i) KO, L(D, e(d are bounded

i) e() -0 as t— o0

Proof: The proof of this theorem will be given in
Appendix A.

IV. Control simulations of uncertain chaotic

system

In this section, the validity and effectiveness of the

proposed AFC are examined through the simulation of

uncertain chaotic system control. A Lorenz system with

three input terms is chosen to demonstrate the ability of the
proposed scheme.

The uncontrolled model for a Lorenz system is given by

x,(8) =~ ax, (D) + axy () + u(D)
(D =cx; (D —2,(D— 2, (D3 (D (28)
%3(D) =2, (D (8) — b5 (D).

The Lorenz model is used for the fluid conviction
description, especially for some feature of the atmospheric
dynamics[19]. x, x, and x; represent measures of fluid

velocity and horizontal and vertical temperature variations,
respectively. a,c, and & are positive parameters
representing the Prandtl number, Rayleigh number and
geometric factor, respectively. In these simulations, we will
consider the system with ¢=10, b=8/3, ¢=28 which is
assumed to be not known exactly.
1. Fuzzy modelling of chaotic systems

In order to apply the suggested AFC, we need a T-S
fuzzy model representation of the chaotic systems. K.Tanaka
has derived the fuzzy models for various chaotic systems in
[8]. Among those models, we consider a Lorenz system
with three input terms. An exact fuzzy modelling[21] has
been employed to construct the fuzzy models for the Lorenz
system. It utilize the concept of sector nonlinearity. The
following fuzzy model exactly represents the nonlinear
equation of the Lorenz system under the assumption that
w(yel—d d
Rule I: If x,(D) is M; then x(H=A, x(H+ B u(d

Rule 2: If () is M, then x(=A, x(D+ B u(t) (29)

where  w(D=[u; (D u () uz(H17
and  x(D=1[x,() 2, (D) x(HI7,

—a a 0 —a a 0
A1={ ¢ -1 ~a’], A2=[ ¢ -1 d],
0 d4d — 0 —d —b
100
B={010]
001
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xl(f)

M=%+ e my=ta-2Ly

where it is assumed that 4= 3(. Figure 1 shows the state
trajectory of the fuzzy modelled chaoctic system(29) with the
initial condition [x, x, x3]J=1{5 5 25).

Fig. 1. State trajectory of fuzzy modelled Lorenz system.

2. Stabilization

In this subsection, the control objective is to suppress
chaos, that is, to drive a system from a chaotic regime to
regular attractor such as fixed points. Such an objective is
justified because, in some cases, the onset of chaos has been
associated with abnormal behavior[20].

To apply the proposed AFC scheme, the SRM for the

state x of the chaotic system to follow should be specified.

In this simulation, the closed loop eigenvalues for each
subsystem are chosen to be the same as

A=[-1, —1—4 —1+4,

which, in turn, make the SRM for each fuzzy subspace to
be the same and linear one as the following,
0 1 0

x;.=A,,.x,,.+er=l0 0 1
-2 —4 -3

100
P 010] r, (30)
001

that is,
(Am)ijzAm and (Bm),‘,'=Bm (Z,]=1,2).

We design the PDC type fuzzy controller to choose the
input vector #% such that all the signals in the closed-loop
system are bounded and the state x of the chaotic system
follows the state x, of the SRM(30). As mentioned
earlier, the idea is to design a compensator for each rule of
the fuzzy model and the resulting overall controller, which
is nonlinear, is a fuzzy blending of each individual linear
controller. The PDC fuzzy controller shares the same fuzzy
sets with fuzzy model to construct its premise part.

Rule 1: If x,(9) is My then u()=—K\() x(0+L, f9) (31
Rule 2: If x\(2) is My then u()=—K,(9) () + Ly n(9)

The feedback and feedforward control  gains
K; L;(i=1,2) of each sub-controller are updated by an
adaptive law so that the closed-loop system follows the
SRM. The initial values of K, L, (i=1,2) are designed
from the nominal parameters of the plant model to be
controlled. We design the initial K, L,(i=1,2) so that
the closed loop system including designed fuzzy feedback
controller has the same eigenvalues as SRM. The nominal
parameters for the chaos fuzzy model of the Lorenz system
are assumed to be 2=8, b=5/3, ¢=30, d=30 in this

simulation. Hence, the initial values of K; L;(i=1,2) can

be given as the following equations.

AIO_BK10= Az(] —BKZ():Am N BLI(): BLZ(]: Bm

Ky=B(Ay—A,), Ly=B'B, i=1,2 (32)
-10 9 0 -10 9 0
K1={ 28 -1 —31], K2=[ 28 -1 29 ]
2 34 0.3333 2 —26 0.3333

100
L1=Lz=[0 1 0].
001

Now by using (27), we derive the following adaptive law
for updating the eclements of K; and L, so that the

closed-loop plant follows the SRM.

Kj(t)={ L ]sgn(z,-)B;Pex’ i=1,2, (33a)
Ky

j=

L(H = —[—ﬁu}sgnupazpe A i=1.2. (33b)
K
2

100 1.95 1.4 0.25
where B,ﬁ=[0 1 0}, P= 1.4 2475 0.475].

001 0.25 0.475 0.325

Figure 2 shows the simulation results of the response of
state and control input with reference input #{(H=
0=1[0 0 017 where the control input is added at ¢ 10. It
can be seen that the designed AFC stabilizes the chaotic
system, that is, x;(H—0, x(H—0,and x3(H—0 although
we can not know the parameters of the chaotic system
exactly.
3. Synchronization

This subsection deals with synchronization problem of
two chaotic systems with different initial conditions each
other. First of all, the reference input 2(#) should be
determined to solve the synchronization problem. The
reference input {5 should be chosen so that «x,, (9
represents a desired trajectory that x(# has to follow. The
exact linearization scheme which was proposed in [8] can
be used to get the reference input.

Bk e

28
=
i

(a) State trajectory x(#)

P

-
m

o ¢ o

vl

|

1

TR § F AR AR T AR VA

(b) Control input #(?)

Fig. 2. Control results of stabilization.
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Consider a stable reference model(SRM) and a chaotic
reference model(CRM) for x,(#) of the SRM to follow.
Stable reference model(SRM):

Rulei: If x,( is N7 and -+ andx,,(f) is N},

then % (D=A i x,(D+B D (34a)
i=1,2,,1

Chaotic reference model(CRM):

Rulei: If xm(® is N¥ and - andxg, () is N%

then xg(=D;xg(d) (34b)
i=1,2,,1.

The inferred output for SRM is represented as

“(h ,Zw:-(t) {A i Zm(D+BrD)
Xt

32 (D) (A 2D+ B (D),

it

i

where wi(f) = ,1:11 Nj (x,{8) and

w1

hi( xm(t)) = .
;wi(f)

Similarly, the inferred output for CRM yield

» PIRCYIENE
xplf) =
i 2uh )

= 310l 2 Dixal),

where p(f) = ,I:Il NE¥(xp(H) and

o xx(D) = —é‘—“)(—)
AVRE)

Assume that e,()= x,(— xg(£). Then, from (35a) and

(35b), we have

en(t) = z;hi( L D) A i X 0) (36)
— 10l x(D)D; 2D+ B D).

Consider two subfuzzy controllers to design the reference
input which makes x,(# follows xg(H.

Subcontroller A

Control vule i © If x,(D is NT and -+ andx,,(8 is N},
then 7a()=—F; x,,(9)
1=1,2,-,1L
(37a)

Subcontroller B

Control yule i+ If xg(8) is NE and - andxp(®) is N
then rp(H=G; xx(D
i=1,2,-,0
(37b)

The parallel connection of the subcontroller A and the
subcontroller B is represented as

A = ra(D+ rald=
= S 2l D F ) — 0 2D G 2],
(39)

By substituting (38) into (36) yields the overall error system
as

en() = [rl wn D A= B xa() (39
— 0, xg(D)D;— BGi] xg()}

Theorem 3: Linearization of TS fuzzy system: The error
system represented by (39) is exactly linearized via the
fuzzy controller (38) as e (D=Hen(f), where
H=A,,—BF\=A,;,—BF;=D;— BG;

(i1=2,3,---,1, 7=1,2,---, ) if there exists the feedback
gains F; and G, such that

{(Am—BF)~(A,;—BF)}"
-{(A,,—BF)—(A,;,—BF)}=0 i=2,3,.1,

(40a)
{(A,i—BF)—(D;— BG)}”
“{(A—BF)—(D;—BGp}=0 j=1,2,-,1.

(40b)
Proof: The proof of this theorem will be given in

Appendix B.
In order to solve the synchronization problem, let the

CRM which the state x,,(#) of the SRM (30) has to follow
be the following chaotic fuzzy model with initial condition
[xw X X30]:[5 5 251

Rule 1: If xgi(®) is Nf then xg(t)=Dy xg(2)

Rule 2 If x(D is N§  then xg(H =Dy xx(d (41)

where x(d=[xp (D 20D xm(H]7,

—a a 0 -a a 0
Dlz{ C _1 —d, Dz:[ C ‘_1 d]
0 d - 0 —d —b
R _1 Xr(?)
NG (D=L + 222
xR ()

NfGeg (D) =4 (1= 252, wp(del—d dl.
Then, we choose a stable matrix

100
H=—10-1=—10'[0 1 0],
001

and design the reference input as follows.
(= ra()+ rp(9).
Subcontroller A:

Rule I: If x4 is My then 74(H=—Fx,()
Rule 2. If x,1 is My then 7,(H)=— Fyx,(9 (42a)
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0 1 0
where F1=F2=B"1(A,,,—H)={ 0 10 1}.
-2 —4 7

Subcontroller B:

Rule 1: If xp is M, then rg()= Gixp(d

Rule 2: If xg is My then rg(H= Gyxp(d (42b)
0 10 0
where GI=B_1(D1—H)=[28 9 —30] and
0 30 7.3333
0 10 0
Gz=B_l(Dg—H)=[28 9 % ]
0 —30 7.3333
Hence, the overall fuzzy controller can be given as
0 1 0
T(t) = TA(t)+ YB(t)=_[ 0 ].O 1 x,,,(t) (43)
-2 —417
gﬂi(t)cixk(f)
+.’_—___..__

’Z/‘i( )]

where p{f) = Mxgn (¥), i=1,2.

Figure 3 presents the trajectory of state x,(# of the
SRM(30) with the reference input(43) and the CRM(4]),
where x,(# is shown by the solid line and CRMI state

xr(D by the dotted line. It can be seen that the designed
reference input makes the state of the stable reference model
follow the CRM after short transient time. Therefore, it can
be used as a reference input for the implementation of AFC.
Figure 4 shows the control results for synchronization of the
Lorenz system(29) with initial condition [x; x; x3]=
[5.5 5.5 24] via proposed AFC, where the control input is
added at > 10 and actual x(£) is shown by the solid line,

J!l!» 2

EREER

””v"a'«) it {’W\‘\} b
\ .
i'{ "‘ Wil

(a) State trajectory x,(9, xg(d

nhl L,, ,1]

»
A i
' -..'”‘ C 'n.|“ lh,l 'h”r
e
#
=

Lok .|.'._.;_‘;‘o..\1"_!’ :

(c¢) Reference input (9
Fig. 3. Control results of chaotic reference model following
control.

model state x,(f£) by the dotted line. We can see that the
AFC synchronizes the uncertain Lorenz system with the
CRM(41) which has the same model form except that the
initial condition is slightly different from that of the Lorenz
system, i.e., [x; %, x;]1=[55 25].

; iy !
il
[ RN (
(a) State trajectory x(f), x,(D
um |h| ' “» it :
QI i S V.I..l‘-.
i 1 S
(b) Tracking error e(§)
n: ) Ti‘f

(c) Control input z(#)

Fig. 4. Control results of synchronization.

4. Chaotic model following control

In this subsection, CMFC problem, i.e., the control
problem to drive a system to a chaotic regime is presented.
This type of control could be important in a variety of
situations where chaos is welcome such as, for example,
some applications to human physiology, secure
communication or heat transfer enhancement, etc.

Let us consider the following fuzzy model for another
Lorenz system as follows.

Rule 1: If x,(H) is M, then x()=A, x()+ B u(d
Rule 2 If x:1(D) is My then (D=A, x(H+ B u(f) (44)

where  w(D="[2, (D uy (D u3(H]T
and (D =[x(D x,(8) x3(17,

—0.5a 0.5a 0 —0.5a 0.5a 0
A= 2c ~1 —d Ay= 2¢ -1 d
0 d —0.5b 0 -d —0. 5b
100
=[o 1 oJ
001

() (8

MG () =5+, () =40 -T2

where the parameters g, b and c are assumed to be not
known exactly.
The SRM is the same as (30) and the CRM which the

states x,,(# of the SRM has to follow is chosen as (41).
Hence, we can design the reference input for the state
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z,($ to follow the CRM through the same procedure
presented in the previous section.

BT

al ‘
] ;
:’v' 'Av:\!‘{l},"\fN \w\w\,\: jJé;n.‘l\. :?MM

o

(a) State trajectory x(f), =x,(P

o e e

(b) Tracking error (9

(c) Control input z(9

Fig. 5. Control results of chaotic model following.

Figure 5 shows the simulation results of CMFC using the
proposed AFC, where the control input is added at )10
and actual x(f is shown by the solid line, model state

x,,(D by the dotted line. As can be seen in these figures,
the uncertain Lorenz system tracks the desired trajectory
generated by the CRM, that is, almost e,(£)—0, e;()—0,

and e3(H—0.

V. Conclusions

In this paper, we have developed an alternative T-S fuzzy
model based adaptive control scheme for a chaotic systems
with parameter uncertainty in their fuzzy model. The
adaptation law adjusts the controller parameters on-line so
that the plant output tracks the SRM output. The developed
adaptive law guarantees the boundedness of all the signals
in the closed-loop system and ensures that the chaotic state
tracks the one of the reference model asymptotically with
time for any bounded reference input signal. The proposed
AFC scheme has been applied to stabilization,
synchronization and CMFC of a Lorenz system to verify the
validity and effectiveness of the control scheme. From the
simulation results, we concluded that the suggested scheme
can effectively solve the control problems of uncertain
chaotic systems based on T-S fuzzy models.
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Appendix A

The proof of theorem 2: From (20) and (26), it directly
follows that V is a Lyapunov function for the system (17),
which implies that the equilibrium given by (19) is
uniformly stable, which, in turn, implies that the trajectory
K(H), I(D, e(d is bounded for all ¢> (. Because
e=x— x, and x, € £, we have that xe £ ...
From (13) and re £ ., we also have that e £ ;
therefore, all signals in the closed-loop are bounded.

Now, let us show that e= £,. From (20) and (26), we

conclude that V has a limit, i.e.,
lim V(e(d, R{D, L{H) = Va loo,  (45)

because V is bounded from below and is nonincreasing
with time.
From (26) and (45), it follows that

Wit

fow eT(—z“é"“"—Qf’)edr: —fom Vdr = (Vy— V) (46)
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system.

where
Vo = We(0), K(0), L}0)) .
On the other hand, from 0<w;<1, 0<g;<1, and

Aoin(@5) S € Qye < Anay (@), which is obtained from
the fact that Q,= QD 0

we have

(A @a) el < eT( z“’uf‘ﬂ"?) e < (Am(Q)} || ell’
“47n
where
{Amin (@)} 1y = Min{Amin(Qp),, Amin (@)}

{Amax(Q’f)}max = max{Amax(Qll),'"r/lmax(Qll)}'
After inserting (47) into (46), and straightforward
manipulation, we have

(Vo= Vel llArmin( @) o < [ N @lde < (Vo= Vo) MAin( QD)
(48)

min

which implies that e £,. Because e, K}, L, r= £ o, it
follows from (17) that es £ « , Which, together with
e £,, implies that e(H) -0 as t—oo.

Appendix B
The proof of theorem 3: If the condition(40) is held, it is
clear that

An—BF\=A,,—BF;=D,—BG=H (i=2,3,--,I, j=1,2,.,D.

Then, the error system(39) can be
e D)= T 5alDVH 20— v, 2l OVH 2D} =
H () T b () = H () 35,0 (D)

=H x, () —Hxp() =H( x,,() — xx(£))=H ea(.
(49)

Chang-Hoon Lee

He received the B.S. degree in
electronics from the Yonsei
University, Korea, and the Ph. D.
degree in system science from Tokyo
Institute of Technology, Japan.
Currently he works at the Yonsei
University, Seoul, Korea. His current
research interests include stability of fuzzy control system,
nonlinear control, robotics, and digital watermark.

Y



Transactions on Control, Automation and Systems Engineering Vol. 3, No. 2, June, 2001

Jung-Hwan Kim

He received the B.S. degree in
electronics from Chungnam National
Uniersity in 1984 and M.S. degree in
electronics from Yonsei University,
Seoul, Korea in 1996. He received Ph.
D. degree in electrical and computer
engineering from Yonsei University,
Seoul, Korea, in 2000. Currently he works at the Hyupsung
University, Korea. His current research interests include
vision system and image processing, fuzzy theory and
nonlinear control.

Mignon Park

He received the B.S. and M.S. degrees
in electronics from Yonsei University,
Seoul, Korea, in 1973 and 1977,
respectively, and the Ph. D. degree
from the University of Tokyo, Tokyo,
Japan, in 1982. Since 1982, he has
been a Professor in the Electrical and
Electronic Department of Yonsei University. His research
interests include fuzzy control and application engineering,
robotics, and fuzzy biomedical system, etc.

105

Seungho Kim

He received the B.S., M.S. and Ph. D.
degrees in mechanical Engineering
from Yonsei University, Seoul, Korea,
in 1979, 1982 and 1988 respectively.
Since 1980, he has been a Lab.
Manager of Advanced Robotics Lab.
in Korea Atomic Energy Research Institute. His research
interests include robot control, vibration control, flexible
robot control, mobile robot control and tele-operated robotic
system, etc.




