• Title, Summary, Keyword: robot design

Search Result 2,201, Processing Time 0.043 seconds

Development of a Robot Element Design Program (로봇 요소품 설계 프로그램 개발)

  • Jung Il Ho;Kim Chang Su;Seo Jong Hwi;Park Tae Won;Kim Hee Jin;Choi Jae Rak;Byun Kyng Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.113-120
    • /
    • 2005
  • This paper presents the development of the design of the robot element. Robot element design is an important part of robot design since it decides the performance and life time of the robot. It is necessary that the robot kinematics and the robot dynamics are accomplished to design the robot elements. The robot kinematics and dynamics determine the design parameters of the element. We developed a robot element design program with which a designer can design the robot element with convenience and reliability. The program is composed of motor, harmonic driver and ball-screw design. The program is founded on the virtual robot design program. The virtual robot design program is the powerful software which may be used to solve various problems of the robot kinematics and dynamics. The robot element design program may be used to calculate the design parameters of the element that are necessary to design robot element. Therefore, the designer can decide upon the available robot elements available to perform the objective of the robot. The robot element design program is expected to increase the competitiveness and efficiency of the robot industry.

Development of a Robot Design Program (로봇 설계 프로그램 개발)

  • Seo Jong Hwi;Kim Chang Su;Jung Il Ho;Park Tae Won;Kim Hyk;Choi Jae Rak;Byun Kyng Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5
    • /
    • pp.87-94
    • /
    • 2005
  • This paper presents the development of a virtual robot design program. Robot design requires numerical software, robot solution software and multi-body dynamics software to complete several designs. However using a commercialized software implies some disadvantages, such as the waste of time and money it costs to learn how to use the software. We developed a virtual robot design program with which a user can design a robot with rapidity and reliability. The virtual robot design program is composed of robot kinematics module and robot dynamics module. The program is powerful software which may be used to solve various problems of a robot. The 3D animator and a 2D/3D graph of the program can analyze the design results into visual data. The virtual robot design program is expected to increase the competitiveness and efficiency of the robot industry.

A Framework of Robot Interface Design with Aging Metaphor (노화 메타포를 적용한 로봇 인터페이스 디자인 프레임워크)

  • An, Hye Young;Pan, Young Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.15-27
    • /
    • 2018
  • Objective: This study aims to apply the concept of aging metaphor to personal service robots to deliver new experiences to users. Background: Personal service robots such as Softbank's Pepper and MIT Media Lab's Jibo have begun entering our lives. These service robots have the important function of interacting with human beings. Method: The robot aging metaphor is to transform the shape, color, motion, voice, and texture, which are visual, auditory, and tactile components, by applying the concept of aging to the robot interface. The robot applied with the concept of aging metaphor forms a close relationship with human beings and provides emotional value to them. We summarize herein the concept of robot aging metaphor and propose an application method using the system and feature of the natural aging process in the real world through the prototype. Results: Robot aging metaphor structure and applied researches of robot aging metaphor are suggested in designing robot interfaces. Conclusion: The results of the design framework of robot aging metaphor will help users to experience emotional value interacting with robots. The framework which is suggested should be applied to social robots in appropriate contexts. Application: Types of aging process which provides optimizing user experience for users should be validated through an experiment.

Autonomous Omni-Directional Cleaning Robot System Design

  • Choi, Jun-Yong;Ock, Seung-Ho;Kim, San;Kim, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.2019-2023
    • /
    • 2005
  • In this paper, an autonomous omni directional cleaning robot which recognizes an obstacle and a battery charger is introduced. It utilizes a robot vision, ultra sonic sensors, and infrared sensors information along with appropriate algorithm. Three omni-directional wheels make the robot move any direction, enabling a faster maneuvering than a simple track typed robot. The robot system transfers command and image data through Blue-tooth wireless modules to be operated in a remote place. The robot vision associated with sensor data makes the robot proceed in an autonomous behavior. An autonomous battery charger searching is implemented by using a map-building which results in overcoming the error due to the slip on the wheels, and camera and sensor information.

  • PDF

Optimization Design of Dry Adhesion for Wall-Climbing Robot on Various Curvatures Based on Experiment (다양한 곡률에 안정적인 등반 로봇을 위한 건식 점착물질의 실험기반 설계변수 최적화)

  • Liu, Yanheng;Shin, Myeongseok;Seo, TaeWon
    • Journal of The Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.398-402
    • /
    • 2014
  • This paper presents the results of a study on the optimal footpad design for vertical climbing on acrylic surfaces with various curvatures used Taguchi methods. For a climbing robot, the adhesion system plays an important role in the climbing process. Only an appropriate adhesion strength will prevent the robot from falling and allow it to climb normally. Therefore, the footpad is a significant parameter for a climbing robot and should be studied. Taguchi methods were used to obtain a robust optimal design, where the design variables were the flat tacky elastomeric shape, area, thickness, and foam thickness of the footpad. Experiments were conducted using acrylic surfaces with various curvatures. An optimized footpad was selected based on the results of the experiments and analysis, and the stability of the wall-climbing robot was verified.

Methodology for Establishment of Operational Concept for Speed-Up of Defense Robot and Improvement Direction of the Defense Acquisition System (국방로봇 신속 전력화를 위한 운용개념 수립 방법론 및 획득체계 개선방향)

  • Eom, Hongseob
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.182-189
    • /
    • 2018
  • The purpose of this paper is to suggest the methodology for the establishment of operational concept for speed-up of defense robot and improvement direction of the defense acquisition system for the defense robot. In order to achieve this goal, the current defense acquisition system was analyzed into long-term planning, mid-term programming, and project execution stages. And I suggest the methodology for the establishment of operational concept for speed-up of defense robot and direction of development of the defense robot acquisition system considering the characteristics of the robot in terms of core technologies of robot, robot ecosystem and effectiveness-based-robot-design, respectively. Based on the methodology for establishment of the operational concept of defense robot and development direction of the defense acquisition system presented in this study, it will be possible to design efficiently the defense robot in the future.

Optimal Design of Robot-Arm using Design of Experiments (실험 계획법을 이용한 로봇 암부위 최적설계)

  • Chung W.J.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.395-396
    • /
    • 2006
  • This paper presents the optimal design of Robot-Arm part use Design of Experiment(DOE). The DOE(Design of Experiment)was conducted to find out main effect factors for design of Robot-Arm part. In this design of Robot-Arm, 5 control factors include numbers of 4 level are selected and we make out L16 orthogonal array. Using this orthogonal array, find out optimal value and main effect factors of object function for design of Robot-Arm part by 16 times of test. We evidence this optimal value by using CATIA V5 Analysis.

  • PDF

A Study on the Practical Human Robot Interface Design for the Development of Shopping Service Support Robot (쇼핑 서비스 지원 로봇 개발을 위한 실체적인 Human Robot Interface 디자인 개발에 관한 연구)

  • Hong Seong-Soo;Heo Seong-Cheol;Kim Eok;Chang Young-Ju
    • Archives of design research
    • /
    • v.19 no.4
    • /
    • pp.81-90
    • /
    • 2006
  • Robot design serves as the crucial link between a human and a robot, the cutting edge technology. The importance of the robot design certainly will be more emphasized when the consumer robot market matures. For coexistence of a human and a robot, human friendly interface design and robot design with consideration of human interaction need to be developed. This research extracts series of functions in need which are consisted of series of case studies for planning and designing of 'A Shopping Support Robot'. The plan for the robot is carried out according to HRI aspects of Design and the designing process fellows. Definite results are derived by the application of series of HRI aspects such as gestures, expressions and sound. In order to verify the effectiveness of application of HRI aspects, this research suggests unified interaction that is consisted of motion-capture, animation, brain waves and sound between a human and a robot.

  • PDF