• Title/Summary/Keyword: road boundary detection

Search Result 30, Processing Time 0.021 seconds

Experiments of Urban Autonomous Navigation using Lane Tracking Control with Monocular Vision (도심 자율주행을 위한 비전기반 차선 추종주행 실험)

  • Suh, Seung-Beum;Kang, Yeon-Sik;Roh, Chi-Won;Kang, Sung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.480-487
    • /
    • 2009
  • Autonomous Lane detection with vision is a difficult problem because of various road conditions, such as shadowy road surface, various light conditions, and the signs on the road. In this paper we propose a robust lane detection algorithm to overcome shadowy road problem using a statistical method. The algorithm is applied to the vision-based mobile robot system and the robot followed the lane with the lane following controller. In parallel with the lane following controller, the global position of the robot is estimated by the developed localization method to specify the locations where the lane is discontinued. The results of experiments, done in the region where the GPS measurement is unreliable, show good performance to detect and to follow the lane in complex conditions with shades, water marks, and so on.

Detection of Road Lane with Color Classification and Directional Edge Clustering (칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출)

  • Cheong, Cha-Keon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.86-97
    • /
    • 2011
  • This paper presents a novel algorithm to detect more accurate road lane with image sensor-based color classification and directional edge clustering. With treatment of road region and lane as a recognizable color object, the classification of color cues is processed by an iterative optimization of statistical parameters to each color object. These clustered color objects are taken into considerations as initial kernel information for color object detection and recognition. In order to improve the limitation of object classification using the color cues, the directional edge cures within the estimated region of interest in the lane boundary (ROI-LB) are clustered and combined. The results of color classification and directional edge clustering are optimally integrated to obtain the best detection of road lane. The characteristic of the proposed system is to obtain robust result to all real road environments because of using non-parametric approach based only on information of color and edge clustering without a particular mathematical road and lane model. The experimental results to the various real road environments and imaging conditions are presented to evaluate the effectiveness of the proposed method.

Autonomous Navigation of KUVE (KIST Unmanned Vehicle Electric) (KUVE (KIST 무인 주행 전기 자동차)의 자율 주행)

  • Chun, Chang-Mook;Suh, Seung-Beum;Lee, Sang-Hoon;Roh, Chi-Won;Kang, Sung-Chul;Kang, Yeon-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.617-624
    • /
    • 2010
  • This article describes the system architecture of KUVE (KIST Unmanned Vehicle Electric) and unmanned autonomous navigation of it in KIST. KUVE, which is an electric light-duty vehicle, is equipped with two laser range finders, a vision camera, a differential GPS system, an inertial measurement unit, odometers, and control computers for autonomous navigation. KUVE estimates and tracks the boundary of road such as curb and line using a laser range finder and a vision camera. It follows predetermined trajectory if there is no detectable boundary of road using the DGPS, IMU, and odometers. KUVE has over 80% of success rate of autonomous navigation in KIST.

Vision-sensor-based Drivable Area Detection Technique for Environments with Changes in Road Elevation and Vegetation (도로의 높낮이 변화와 초목이 존재하는 환경에서의 비전 센서 기반)

  • Lee, Sangjae;Hyun, Jongkil;Kwon, Yeon Soo;Shim, Jae Hoon;Moon, Byungin
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.94-100
    • /
    • 2019
  • Drivable area detection is a major task in advanced driver assistance systems. For drivable area detection, several studies have proposed vision-sensor-based approaches. However, conventional drivable area detection methods that use vision sensors are not suitable for environments with changes in road elevation. In addition, if the boundary between the road and vegetation is not clear, judging a vegetation area as a drivable area becomes a problem. Therefore, this study proposes an accurate method of detecting drivable areas in environments in which road elevations change and vegetation exists. Experimental results show that when compared to the conventional method, the proposed method improves the average accuracy and recall of drivable area detection on the KITTI vision benchmark suite by 3.42%p and 8.37%p, respectively. In addition, when the proposed vegetation area removal method is applied, the average accuracy and recall are further improved by 6.43%p and 9.68%p, respectively.

Road Slide Detection Algorithm Using CCD Camera (CCD 카메라를 이용한 도로 붕괴 사태 검출 알고리즘)

  • Kwon, Young-Man;Shin, Se-Yeon;Park, Young-Jin;Kim, Eun-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.181-187
    • /
    • 2011
  • In this paper, we proposed the vision-based efficient algorithm for road slide detection like as destruction of road cut slope. The proposed algorithm defines the image region as non surveillance and surveillance which is further divided by road, boundary and non road region. After that, it find the moving block, remember the history of movement using the TTL(Time To Live) table, determine the road slide by checking the existence of moving blocks from non road region to road region together. We confirmed the proposed algorithm detected the road slide effectively through experiments.

Detection of Roads Information and the Accuracy Analysis from IKONOS Satellite Image Data (IKONOS 위성 영상데이터로부터 도로정보의 판독과 그 정확도 분석)

  • 안기원;김상철;신석효
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.235-242
    • /
    • 2002
  • This study is focused on the analysis of road extracting accuracy from the high resolution IKONOS satellite image data. A geometric correction of the image is performed using the RFM and interpretation with the screen digitizing is also performed for extracting the roads information. For the evaluation of road extracting accuracy, the road locations and the road widths are compared with the national digital map. The comparison results shows that the road boundary and the size of road width are able to extract with the geometric accuracy of $\pm$3.4m and $\pm$1.1m.

A High Speed Road Lane Detection based on Optimal Extraction of ROI-LB (관심영역(ROI-LB)의 최적 추출에 의한 차선검출의 고속화)

  • Cheong, Cha-Keon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.253-264
    • /
    • 2009
  • This paper presents an algorithm, aims at practical applications, for the high speed processing and performance enhancement of lane detection base on vision processing system. As a preprocessing for high speed lane detection, the vanishing line estimation and the optimal extraction of region of interest for lane boundary (ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled. Image feature information is extracted only in the ROI-LB. Road lane is extracted using a non-parametric model fitting and Hough transform within the ROI-LB. With simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since outliers of edge at each block can be removed with clustering of edge orientation for each block within the ROI-LB, the performance of lane detection can be greatly improved. The various real road experimental results are presented to evaluate the effectiveness of the proposed method.

Real-time Forward Vehicle Detection Method based on Extended Edge (확장 에지 분석을 통한 실시간 전방 차량 검출 기법)

  • Ji, Young-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.35-47
    • /
    • 2010
  • To complement inaccurate edge information and detect correctly the boundary of a vehicle in an image, an extended edge analysis technique is presented in this paper. The vehicle is detected using the bottom boundary generated by a vehicle and the road surface and the left and right side boundaries of the vehicle. The proposed extended edge analysis method extracts the horizontal edge by merging or dividing the nearby edges inside the region of interest set beforehand because various noises deteriorates the horizontal edge which can be a bottom boundary. The horizontal edge is considered as the bottom boundary and the vertical edges as the side boundaries of a vehicle if the extracted horizontal edge intersects with two vertical edges which satisfy the vehicle width condition at the height of the horizontal edge. This proposed algorithm is more efficient than the other existing methods when the road surface is complex. It is proved by the experiments executed on the roads having various backgrounds.

Lane Detection Algorithm using Morphology and Color Information (형태학과 색상 정보를 이용한 차선 인식 알고리즘)

  • Bae, Chan-Su;Lee, Jong-Hwa;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.15-24
    • /
    • 2011
  • As increase awareness of intelligent vehicle systems, many kinds of lane detection algorithm have been proposed. General boundary extraction method can bring good result in detection of lane on the road. But a shadow on the road, or other boundaries, such as horizontal lines can be detected. The method using morphological operations was used to extract information about Lane. By applying HSV color model for color information of lane, the candidate of the lane can be extracted. In this paper, the lane detection region was set by Hough transformation using the candidate of the lane. By extracting lane markings on the lane detection region, lane detection method can bring good result.

Comparative Analysis of LPF and HPF for Roads Edge Detection from High Resolution Satellite Imagery (고해상도위성영상에서 도로 경계 검출을 위한 고주파와 저주파 필터링 비교분석에 관한 연구)

  • Choi, Hyun;Kang, In-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.3-11
    • /
    • 2006
  • The need for edge detection about topography data from the high resolution satellite imagery is happening with increasing frequency according to many people utilize the its imagery as various fields recently. Many experts is recognizing of other GIS will make use of the road detection from the high resolution satellite imagery, including ITS (Intelligent Transportation Systems) and urban planning. This paper is comparative analysis of LPF (Low Pass Filtering) and HPF (High Pass Filtering) for roads edge detection from high resolution satellite imagery. As a result, LPF and HPF can be highlight selective pixels at edge area about input data. In case or applying to other techniques such as LPF for the same purpose, they aye more effective for wide road width which often cause the slight distortion of boundary or overall change of brightness values on the whole Image. Whereas, HPF has ability to enhance selectively detailed components in a target image.

  • PDF