• Title/Summary/Keyword: right(left) duo

Search Result 23, Processing Time 0.021 seconds

WEAKLY DUO RINGS WITH NIL JACOBSON RADICAL

  • KIM HONG KEE;KIM NAM KYUN;LEE YANG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.457-470
    • /
    • 2005
  • Yu showed that every right (left) primitive factor ring of weakly right (left) duo rings is a division ring. It is not difficult to show that each weakly right (left) duo ring is abelian and has the classical right (left) quotient ring. In this note we first provide a left duo ring (but not weakly right duo) in spite of it being left Noetherian and local. Thus we observe conditions under which weakly one-sided duo rings may be two-sided. We prove that a weakly one-sided duo ring R is weakly duo under each of the following conditions: (1) R is semilocal with nil Jacobson radical; (2) R is locally finite. Based on the preceding case (1) we study a kind of composition length of a right or left Artinian weakly duo ring R, obtaining that i(R) is finite and $\alpha^{i(R)}R\;=\;R\alpha^{i(R)\;=\;R\alpha^{i(R)}R\;for\;all\;\alpha\;{\in}\;R$, where i(R) is the index (of nilpotency) of R. Note that one-sided Artinian rings and locally finite rings are strongly $\pi-regular$. Thus we also observe connections between strongly $\pi-regular$ weakly right duo rings and related rings, constructing available examples.

ON RIGHT(LEFT) DUO PO-SEMIGROUPS

  • Lee, S.K.;Park, K.Y.
    • Korean Journal of Mathematics
    • /
    • v.11 no.2
    • /
    • pp.147-153
    • /
    • 2003
  • We investigate some properties on right(resp. left) duo $po$-semigroups.

  • PDF

DUO RING PROPERTY RESTRICTED TO GROUPS OF UNITS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.489-501
    • /
    • 2015
  • We study the structure of right duo ring property when it is restricted within the group of units, and introduce the concept of right unit-duo. This newly introduced property is first observed to be not left-right symmetric, and we examine several conditions to ensure the symmetry. Right unit-duo rings are next proved to be Abelian, by help of which the class of noncommutative right unit-duo rings of minimal order is completely determined up to isomorphism. We also investigate some properties of right unit-duo rings which are concerned with annihilating conditions.

ON NILPOTENT-DUO RINGS

  • Piao, Zhelin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.401-408
    • /
    • 2019
  • A ring R is called right (resp., left) nilpotent-duo if N(R)a ⊆ aN(R) (resp., aN(R) ⊆ N(R)a) for every a ∈ R, where N(R) is the set of all nilpotents in R. In this article we provide other proofs of known results and other computations for known examples in relation with right nilpotent-duo property. Furthermore we show that the left nilpotent-duo property does not go up to a kind of matrix ring.

Structures Related to Right Duo Factor Rings

  • Chen, Hongying;Lee, Yang;Piao, Zhelin
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.11-21
    • /
    • 2021
  • We study the structure of rings whose factor rings modulo nonzero proper ideals are right duo; such rings are called right FD. We first see that this new ring property is not left-right symmetric. We prove for a non-prime right FD ring R that R is a subdirect product of subdirectly irreducible right FD rings; and that R/N∗(R) is a subdirect product of right duo domains, and R/J(R) is a subdirect product of division rings, where N∗(R) (J(R)) is the prime (Jacobson) radical of R. We study the relation among right FD rings, division rings, commutative rings, right duo rings and simple rings, in relation to matrix rings, polynomial rings and direct products. We prove that if a ring R is right FD and 0 ≠ e2 = e ∈ R then eRe is also right FD, examining that the class of right FD rings is not closed under subrings.

REGULARITY IN RIGHT DUO SEMINEARRINGS

  • S. SENTHIL;R. PERUMAL
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.1037-1046
    • /
    • 2023
  • The reason behind to investigate axiom systems with fewer axioms into investigate what types of results still hold, and what results become more general. Seminearrings obtained by the generalisation of nearrings and semirings. Clearly, seminearrings are common abstraction of semirings and nearrings. The aim of this work is to carry out an extensive study on algebraic structure of seminearrings and the major objective is to further enhance the theory of seminearrings in order to study the special structures of seminearrings, this work addresses some special structures of seminearrings such as right duo seminearrings. The right ideal of a seminearring need not be a left ideal. We focused on those seminear-rings which demonstrate this property. A seminearring S is right duo if every right ideal is two sided. Here we have concentrated on the seminearring which are right duo and regular. Main aim of this paper is to deal with properties of regularity in right duo seminearring. We have given some results on right duo seminearring. Followed by that, we have derived some theorems on the relation between the properties of seminearring such as regularity, semi simplicity and intra-regularity in right duo seminearring. We also illustrate this concept with suitable examples.

Interval-valued Fuzzy Ideals and Bi-ideals of a Semigroup

  • Cheong, Min-Seok;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.259-266
    • /
    • 2011
  • We apply the concept of interval-valued fuzzy sets to theory of semigroups. We give some properties of interval-valued fuzzy ideals and interval-valued fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and a semilattice of left [right] simple semigroups or another type of semigroups in terms of interval-valued fuzzy ideals and intervalvalued fuzzy bi-ideals.

INTUITIONISTIC FUZZY IDEALS AND BI-IDEALS

  • HUR, KUL;KIM, KWANG JIN;SONG, HYEONG KEE
    • Honam Mathematical Journal
    • /
    • v.26 no.3
    • /
    • pp.309-330
    • /
    • 2004
  • In this paper, we apply the concept of intuitionistic fuzzy sets to theory of semigroups. We give some properties of intuitionistic fuzzy ideals and intuitionistic fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and a semilattice of left [right] simple semigroups or another type of semigroups in terms of intuitionistic fuzzy ideals and intuitionistic fuzzy bi-ideals.

  • PDF

RINGS WITH A RIGHT DUO FACTOR RING BY AN IDEAL CONTAINED IN THE CENTER

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.529-545
    • /
    • 2022
  • This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring R is called right CIFD if R/I is right duo by some proper ideal I of R such that I is contained in the center of R. We first see that this property is seated between right duo and right π-duo, and not left-right symmetric. We prove, for a right CIFD ring R, that W(R) coincides with the set of all nilpotent elements of R; that R/P is a right duo domain for every minimal prime ideal P of R; that R/W(R) is strongly right bounded; and that every prime ideal of R is maximal if and only if R/W(R) is strongly regular, where W(R) is the Wedderburn radical of R. It is also proved that a ring R is commutative if and only if D3(R) is right CIFD, where D3(R) is the ring of 3 by 3 upper triangular matrices over R whose diagonals are equal. Furthermore, we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring R is right CIFD if and only if R/I is commutative by a proper ideal I of R contained in the center of R.