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Abstract

We apply the concept of interval-valued fuzzy sets to thedryemigroups. We give some properties of interval-valued
fuzzy ideals and interval-valued fuzzy bi-ideals, and ebterize which is left [right] simple, left [right] duo andsamilat-
tice of left [right] simple semigroups or another type of $gimups in terms of interval-valued fuzzy ideals and insdrv
valued fuzzy bi-ideals.
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1. Introduction
0=1[0,0],1 =[1,1], anda = [a,a] for everya € (0,1),

o . We also note that
As a generalization of fuzzy sets introduced by

Zadeh[14], he[15] introduced the concept of interval- (i (v M, N € D(I))

valued fuzzy sets. After that time, Gorzalczany[4] ap- (M = N < ML = NE, MU = NU),
plied it to a method of inference in approximate resoning,

Biswass[1] to group theory and Montal and Samanta[12]ii) (
to topology. Recently, Hur et al.[5] introduced the notion (
of interval-valued fuzzy relations and obtained some of it’
properties. Moreover, Choi et al.[3] introduced the conceg O everyM € D(I), the complement of M, denoted by
of interval-valued smooth topological spaces and studiedf . is defined byl/© =1 —M = [1 - MY, 1-M"] (See
it. Kang and Hur[6] investigated interval-valued fuzzy sub[12]).

groups and rings. - . _

In this paper, we apply the notion of interval—valuectlzeégllgc&nazn'ii‘te[rt;jéjLljg]j ﬁjzrznyazeptm(?r?shcfft R)/Fg)({%
fuzzy sets to theory of semigroups. We give some PrOP% ~4enoted byd — [AL, AV], if AL, AU e’ X such
erties of interval-valued fuzzy ideals and interval-value ;' =" U T U

- : s X ~“that A~ < AY, ie., A"(z) < A" (z) for eachz € X,
fuzzy bi-ideals, and characterize which is left [right] sim where AL (z)[resp. AU ()] is called thelower[resp. up-
ple, left [right] duo and a semilattice of left [right] sim- | end point of .9: to A, For anyla,b] € D(I)' the
ple semigroups or another type of semigroups in terms g]er p X yla, !

; . . . ” .interval-valued fuzzy setd in X defined by A(z) =
:gteearl\gal valued fuzzy ideals and interval-valued fuzzy bi [ﬁ(m),AU(x)] — [a,b] for eachs € X is denoted by

[a,b] and ifa = b, then the IVF$a, b] is denoted by simply
a. In particular,0 and1 denote thenterval-valued fuzzy
2. Preliminaries empty set and theinterval-valued fuzzy whole set in X, re-
spectively.
We will list some concepts needed in the later sections. . . X
Let D(I) be the set of all closed subintervals of the IWe \r']\”” deirjloie tAhejet olf)ay I)\(”;SS ”XEED(Q( -ftis
unit interval I = [0,1]. The elements oD(I) are gen- clearthat setl = |4, A] € D(I)" for eachd € I*".
erally denoted by capital lette®, NV, - - -, and note that pefinition 2.2. [12] Let A,B € D(X and let
M = [M*, MVY], whereM* and MY are the lower and [ 4 Yoer € D(I)X. Then:
the upper end points respectively. Especially, we denoteé, aJas

vV M,N € D(I))
M < N& ME<SNE MY <NY).

(i) Ac Biff AL < BFandAY < BY.

Manuscript received Sep. 27, 2011; received Dec. 3, 20tEpted Dec. )
3,2011. (i) A=Biff AC BandB C A.
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(iii) A°=[1 — AY 1 — AL].
(iv) AuB=[ALv BE AY v BY].

() | JAa=[\ 45 \/ ALl

acTl acTl acTl

(v) AnB=[AY A BE AY A BY).

@ [ 4a =T\ 42 A\ AQL

acl acll acll
Definition 2.3. [6] An interval-valued fuzzy se#d in G
is called aninterval-valued fuzzy subgroupoid(in short,
IVGP) in G if

AF(zy) > AF(z) A AL (y),

and
AU(xy) > AU(JJ) A AU(y), Vz,y€q.

It is clear that0,1 € IVGP(G). We will denote the
IVGPs inG as IVGP(G).

Definition 2.4. [6] Let A be an IVFS of a grougs and
[\, 1] € D(I). Then the subgroug*#! is called a|\, y]-
level subset of A.

3. Interval-valued fuzzy ideals and bi-ideals of
a semigroup

Let .S be a semigroup. By subsemigroup of S we mean
a non-empty subset of S such thatd? c A and by aeft
[resp. right] ideal of S we mean a non-empty subsétof
S such that
SA C Alresp.AS C Al

By two-sided ideal or simplyideal we mean a subset of

S which is both a left and a right ideal 6f. A semigroupS

is said to béeft[resp.right] simpleif S itself is the only left
[resp. right] ideal ofS. S is said to besimple if it contains
no proper ideal.

Definition 3.1. Let S be a semigroup and let € D(I)".
ThenA s called an :

(1) interval-valued fuzzy subsemigroup (in short, IVSG)
of S if
Al (ay) > AT (x) A AR (y),

and
AY(zy) > AY(z) A AY (y)

foranyz,y € S.

(2) interval-valued fuzzy left ideal (in short,IVLI) of S if
A (zy) > A¥(y), andAY (zy) > AY(y)

foranyz,y € S.
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(3) interval-valued fuzzy right ideal (in short,IVRI) of S
if

AL (zy) > AL(z), andAY (zy) > AY(z)
foranyz,y € S.

(4) interval-valued fuzzy (two-sided) ideal (in short,IVI)
of S if it is both an interval-valued fuzzy left and an
interval-valued fuzzy right ideal of.

We will denote the set or all IVSGs [resp. IVLIs, IVRIs
and IVIs ] of S as IVSG(S) [resp. IVLI(S), IVRI(S) and
IVI(S)].

Itis clear thatd € IVI(S) if and only if

AP (zy) > A (z) N AR (y),

and
AY(zy) > AY(z) A AY (y)

foranyz,y € S, and if A € IVLI (S)[resp. IVRI(S) and
IVI(S)], thenA € IVSG(S).

Remark 3.2. Let S be a semigroup.
(a) If Aisafuzzy subsemigroup of S, then
A= [A, A] € IVSG(S).

(b) If A € IVSG(S) [resp. [IVI(S), IVLI(S) and
IVRI(S)], then AX and AY are fuzzy subsemigroup
[resp. ideal, left ideal and right ideal] of S.

Result 3.A. [6, Proposition 3.7]Let A be a non-empty
subset of a groupoid S. A isa subgroupoid of S if and only
”[XA?XA]G “KEP(S)

The following is the immediate result of Definition 3.1
and Result 3.A.

Theorem 3.3. Let A be a non-empty subset of a semigroup
S. ThenA is a subsemigroup of if and only if [x 4, x4] €
IVSG(S).

Result 3.B. [6, Proposition 6.6]Let R bearing. Then A
isanideal [resp. aleftideal and aright ideal] of R if and
onlyif [xa,xa] € IVI(R) [resp. IVLI (R) and IVRI (R)].

The following is the immediate result of Definition 3.1
and Result 3.B.

Theorem 3.4. Let A be a nonempty subset of a semigroup
S. ThenA is an ideal [resp. a left ideal and a right ideal]
of S if and only if [x 4, xa] € IVI(S) [resp. IVLI(S) and
IVRI(9)].

Proposition 3.5. Let S be a semigroup. IfA €
IVSG(S)[resp. IVI(S), IVLI(S) and IVRI(S)], then
AMH s a subsemigroup [resp. ideal, left ideal and right
ideal] of S.
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The following result is the converse of Proposition 3.5: ¢ = zyz. Sincex,z € A, xa(z) = xa(z) = 1. Since

Proposition 3.6. Let S be a semigroup and let € D(1).
If A4 is a subsemigroup [resp.
right ideal ] of S for each[A\,u] € D(I), then A €
IVSG(S)[resp. IVI(S), IVLI (S) and IVRI(S)].

Proof. Supposed*l is a subsemigroup of for each
[\, u] € D(I). Foranyz,y € S, let A(z) = [A1, p1]
and letA(y) = [\, po]. ThenAL(z) = Ay > A1 A Mg,
AV(z) = 1 > i Ape and AL (y) = Ay > A A Ay,
AY(y) = p2 > g A pa. Thusz,y € AP aminal
Since[A1 A Ag, 11 A pe] € D(I), by the hypothesisyy €
AP i) Then AF(zy) > A A Xy = Al(x) A
AL (y) and AY (xy) > p1 A pe > AY(2) A AY(y). Hence
A € IVSG(S).

Now supposed* is a left ideal ofS for each[\, u] €
D(I). Foreachy € S, let A(y) = [, u]. Then clearlyy €
AWM Letz € S. Then, by the hypothesisy € AM#,
Thus A (zy) > A = AF(y) and AY (zy) > u = AY(y).
HenceA € IVLI (S).

[xa;xal € IVBI(S), xa(zyz) > xa(z) A xa(z) = L.
Thenya(xyz) = 1. Thust = azyz € A. SOASA C A.

ideal, left ideal andy qreqver, by Theorem 3.34 is a subsemigroup of.

HenceA < BI(S5). O

Theorem 3.9. Let S be a semigroup. Thefi is a group if
and only if every IVBI ofS is a constant mapping.

Proof. (=): SupposeS is a group with the identity.
Let A € IVBI(S), and leta € S. Then
AL (a) = AF(eae) > Al (e) N AF(e) = AL (e)
= Al (ee) = A¥((aa™)(a"'a))
= Al(a(a"'a"Y)a) > A% (a) A AX(a)
== AL(a).

By the similar arguments, we have that' (a) > AY(a).
ThusA(a) = A(e). HenceA is a constant mapping.

Also, we easily see the rest. This completes the proof. (<): Suppose the necessary condition holds. Assume

O

A subsemigroupd of a semigrours is called abi-ideal

that.S is not a group. Then it follows from p.84 in [2] that
S contains a proper bi-ideal of S. Then there exists an
x € Ssuchthatr ¢ A. Lety € A with y # z. SinceA

of Sif ASA C A. We will denote the set of all bi-ideals of iS & bi-ideal ofS, by Theorem 3.8[x 4, x4] € IVBI(5).

S as BI(.S).

Definition 3.7. Let S be a semigroup and led €
IVSG(S). ThenA is called aninterval-valued fuzzy bi-
ideal (in short,IVBI) of S if

AL (wyz) > AX(z) A AL(2),

and
AY(zyz) > AY(z) A AY(2)

foranyz,y,z € S.

We will denote the set of all IVBIs o5 as IVBI(S).

The following result shows that the concept of an IVBI in

a semigroup is an extended one of a bi-ideal.

By the hypothesis|x 4, x4] is a constant mapping. Thus
[xa,xal(z) = [xa,xal(y), i.e., xa(z) = xa(y). Since
x ¢ Aandy € A, xa(z) = 0 < xaly) = 1, i.e,
[xa,xal(z) = [0,0] # [1,1] = [xa,xa](y). Thisis a
contradiction. Hence5 is a group. This completes the
proof. |

Proposition 3.10. Every IVLI[resp. IVRI and IVI] of S is
an IVBI of S.

Proof. Supposed € IVLI (S), and letz, y, z € S. Then
Al (zyz) = AF((zy)z) > AX(2) > Al (z) A AF(2) and
AY(zyz) = AY((zy)z) > AY(2) > AY(x) A AY(2). So
A € IVBI(S). Similarly, we can see that the other cases
hold. O

Theorem 3.8. Let A be a non-empty subset of a semigroup

S. Then A is a bi-ideal ofS if and only if [x4, x4] €
IVBI (S).

Proof. (=): Supposed € BI(S) and letz, y,z € S.

Case (i): Suppose € Aandz € A. Thenya(z) =
xa(z) = 1. SinceA is a bi-ideal ofS, zyz € ASA C A.
Thusxa(zyz) = 1= xa(z) A xa(z).

Case (ii): Suppose ¢ Aorz ¢ A. Thenyxa(z) =0
or xa(z) = 0. Thusxa(zyz) > 0 = xa(z) A xa(2).
So, in either caseg;a (zyz) > xa(z) A xa(z). Moreover,
by Theorem 3.2]x 4, xa] € IVSG(S). Hence[x 4, x4] €
IVBI(S).

(«): Suppos€xa,xal € IVBI(S). Lett € ASA.
Then there existr,z € A andy € S such that

Theorem 3.11. Let S be a semigroup and let € D(I)5.
ThenA < IVBI(S) if and only if A+ ¢ BI(S) for each
[\ ] € D).

Proof. (=): Supposed € IV BI(S), and let[\, u] €
D(I). SinceA € IVSGS, by Proposition 3.54 #l is a
subsemigroup of. Lett € AN #1SAR 4 Then there
existz,z € AM# andy € S such that = zyz. Since
A € IVBI(S), we have

AL(t) > AL(x) A AL(z) >\
and

AY(t) > AY(x) A AV (y) > .

261



International Journal of Fuzzy Logic and Intelligent Systems, vol. 11, no. 4, December 2011

Thust € APM#, sSo AHgAMH A Hence completes the proof. O
A € BI(S).

(«<): Suppose the necessary condition holds. Sincheorem 4.2’ [The dual of Theorem 4.2] Let S be a
AP 1l is a subsemigroup of, by Proposition 3.6A4 €  regular semigroup. Then S isright duo if and only if S is
IVSG(S). For anyz,z € S, let A(x) = [A,p1] and  IVRD.
let A(z) = [A2, pe]. Then, by the process of the proof of

Proposition 3.6z, z € APM1AX2 mAwal ety € S. Then, The following is the immediate result of Theorem 4.2
by the hypothesisyyz € AXA A2 Akl Thys and 4.2.
Al (zyz) > M\ ANy = AL (2) A AL (2), Theorem 4.3. Let S be a regular semigroup. Thehis
duo if and only ifS is IVD.
and
AY(zyz) > py A pg < AY(z) A AY(2). Theorem 4.4. Let S be a regular semigroup. Then every
HenceA € IVBI (). This completes the proof. 0 bi-ideal of S is a right ideal ofS if and only if every IVBI

of S'is an IVRI of S.

Proof. (=): Suppose every bi-ideal ¢f is a right ideal

4. Interval-valued fuzzy duos, ideals and ~ ©f S '—et]{l € l]nyl (i) and leta, b G[&f szen, ;Jy the
i ; process of proof of Theorem 3.4 in [8}p € (aSa)S C
bi-ideals of a regular semigroup aSa. Thus there exists am € S such thatab = aza.

SinceA € IVBI (S), we have
A semigroup$ is said to beregular of for eacha € S
there exists an € S such that: = axa. Al (ab) = A¥(axa) > AL (a) A AL (a) = AV (a),
A semigroups$ is said to bdeft duo[resp. right duo] if
every left [resp. right] ideal of is a two-sided ideal of.  and
A semigroups is said to beluo if it is both left and right
duo. AY(ab) = AY(aza) > AY(a) A AY(a) = AY(a).

Definition 4.1. A semigroups is said to be : HenceA e IVRI(S).

(«<): Suppose that every IVBI of is an IVRI of
S, and let A be any bi-ideal ofS. Then, by Theo-
rem 3.8, [xa,xa] € IVBI(S). By the assumption,

(2) interval-valued fuzzy right duo(in short,IVRD) if ev-  [xa,xa] € IVRI(S). SinceA # &, by Theorem 3.44 is
ery IVRI of S is an IVl of S. aright ideal ofS. This completes the proof. O

(1) interval-valued fuzzy left duo(in short,IVLD) if every
IVLI of Sisan IVIofS.

(3) interval-valued fuzzy duo(in short, VD) if it is both
interval-valued fuzzy left and interval-valued fuzzyResult 4.A. [11, Theorem 3]Every bi-ideal of a regular
right duo. left duo semigroup S isaright ideal of S.

Theorem 4.2. Let S be aregular semigroup. Théhis left  Corollary 4.5. Let S be a regular duo semigroup. Then
duo if and only ifS is IVLD. every IVBIl of Sis a IVRI of S.

Proof. (=): Supposes is left duo. Letd € IVLI(S) Proof. By Result 4.A, every bi-ideal of is a right ideal
and leta,b € S. Then, by the process of the proof ofof 5. Hence, by Theorem 4.3, it follows that every IVBI of

Theorem 3.1 in [8]ab € (aSa)b C (Sa)S C Sa. Thus  gisan IVRIofS. 0

there exists ar € S such thatab = za. SinceA €

IVLI(S), 5 B ; Theorem 4.4’ [The dual of Theorem 4.4] Let S be a
A”(ab) = A% (za) = A%(a), regular semigroup. Then every bi-ideal of S is a left ideal

and of S'if and only if every IVBI of S isan IVLI of S.

AY(ab) = AY (za) > AY(a). o . :
The following is the immediate result of Theorem 4.4
ThenA € IVRI(S). ThusA € IVI(S). HenceSis IVLD.  gnd 4.4.

(«<): SupposeS is IVLD, and let A be any left ideal
of S. Then, by Theorem 3.4, 4,x4] € IVLI(S). By Theorem 4.6. Let S be a regular duo semigroup. Then
the assumptionfx 4, xa] € IVI(S). SinceA # 0, by every bi-ideal ofS is an ideal ofS if and only if every
Theorem 3.4A is an ideal ofS. HenceS is left duo. This VBl of Sis an IVI of S.
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A semigroups is called asemilattice of groups [2] if

Theorem 4.8’ [The dual of Theorem 4.8]Let S be a reg-

it is the set-theoretical union of a set of mutually disjointular semi group. Thef's forms a right zero subsemigroup

subgroupsi,(a € T'), i.e., S = J,cr Go Such that for
anyo, p € I', G,Gg C G, andGgG, C G, for some
vyel.

Result 4.B. [10, Theorem 4]Every bi-ideal of a semi-
group S which is a semilattice of groups, is an ideal of
S.

The following is the immediate result of Result 4.B andgroup if and only if for eachd € IVBI (S), A(e)

Theorem 4.6.

of S'if and only if for eachA4 € IVRI(S), A(e) = A(f) for
anye, f € Es.

Corollary 4.9.” [The dual of Corollary 4.9] Let S be an
semigroup. TherS is right zero if and only if for each
A € IVRI(S), A(e) = A(f) foranye, f € S.

Theorem 4.10. Let S be a regular semigroup. Thehis a
A(f)

foranye, f € Eg.

Corollary 4.7. Let S be a semigroup which is a semilattice Proof. (=): SupposeS is a group. Letd € IVBI(S).

of groups. Then every IVBI of is an VI of §.

We denote byL[a] [resp. J[a]] the principle left [resp.
two-sided] ideal of a semigroup generated by in S, i.e.,

L[a] = {a} U Sa,

and
Jla] = {a} USaUaSUSaS.

It is well-known [2, Lemma 2.13] that it is a regular
semigroup, thet[a] = Sa for eacha € S.

A semigroups is said to beight zero[resp. |eft zero] if
zy = y[resp.zy = z] foranyz,y € S.

Theorem 4.8. Let S be a regular semigroup and |&ts
the set of all idempotent elements 8f Then Es forms
a left zero subsemigroup of if and only if for each
A € IVLI(S), A(e) = A(f) for anye, f € Eg, where
Es denotes the set of all idempotent elements of

Proof. (=): SupposeEs forms a left zero subsemi-
group ofS. Let A € IVLI (S), and lete, f € E5. Then, by
the hypothesisgf = e and fe = f. SinceA € IVLI (S),
we have

Al(e) = Al(ef) > f* = A" (fe) > AX(e),
and
AV(e) = AV(ef) > fU = AV (fe) > AV (e).

HenceA(e) = A(f).

(«<): Suppose the necessary condition holds. Sice
regular,Es # (). Lete, f € Es. Then, by Theorem 3.4,
Dxeis) el € IVLE(S). Thusxpis(e) = xryp(f) = 1.
Soe € L[f] = Sf. Then there exists an € S such that
e=xf =xff =ef. HenceEy is a left zero semigroup.
This completes the proof. a

Then, by Theorem 3.84 is a constant mapping. Hence
A(e) = A(f) foranye, f € Es.

(«<): Suppose the necessary condition holds.
e,f € Eg. Let Blz] denote the principal bi-ideal of
generated by in S, i.e., Blz] = {z} U {2%} U 25z [2,
p.84]. Moreover, ifS is regular, therB[z] = xSz for each
x € S. Then, by Theorem 3.8x 5[y, x[#]] € IVBI(S).
Since f € B[f], xsisi(e) = xsrn(f) = 1. Then
e € B[f] = fSf. Thus, by the process of the proof of
Theorem 3.14 in [8]¢ = f. SinceS is regular,E, # 0
andS contains exactly one idempotent. So it follows from
[2, p.33(Ex. 4)] thatS is a group. This completes the
proof. |

Let

5. Intra-regular semigroups

A semigroups is said to beintra-regular if for each
a € S, there existz,y € S such thate = za?y. For
characterization of such a semigroup, see [2, Theorem 4.4]
and [13, 11.4.5 Theorem].

Theorem 5.1. Let S be a semigroup. Thef is intra-

regular if and only if for each! € IVI(S), A(a) = A(a?)
for eacha € S.
Proof. (=): SupposeS is intra-regular. LetA €

IVI(S), and leta € S. Then, by the hypothesis, there exist
z,y € S such thatz = zay. SinceA € IVI(S), we have

AL (a) = AF(za’y) > AX(za?) > AL(a?) > AL(a),
and
AY(a) = AY (za?y) > AY(za®) > AY(a®) > AY(a).

HenceA(a) = A(a?) for eacha € S.

(«<): Suppose the necessary condition holds and let
a € S. Then, by Theorem 3.4y j1.21, X.a2)] € IVI(S).
Sincea® € J[aQ], X'][az](a) = X{][az](GQ) = 1. Thus

Corollary 4.9. Let S be an idempotent semigroup. Thena € J[a?] = {a} U Sa? U a%S U Sa?S. So we can easily

S is left zero if and only if for eactt € IVLI (S), A(e)
A(f) foranye, f € S.

see thatS is intra-regular. This completes the proof. [
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Proposition 5.2. Let S be an intra-regular semigroup. Theorem 6.2. Let .S be a semigroup. Then the followings

Then for eachA € IVI(S), A(ab) =
a,bes.

Proof. Let A € IVI(S), and leta,b € S. Then, by The-
orem 5.1, AL (ab) = AL((ab)?) = AL (a(ba)b) > AL (ba)
= AL((ba)?) = AL(b(ab)a) > Al (ab). By the similar
arguments, we have thatV(ab) > AY(ab). Thus
A(ab) = A(ba). This completes the proof. O

A(ba) for any

6. Completely regular semigroups
A semigroupsS is said to becompletely regular if for
eacha € 5, there exists am € S such that
a = ara andax = za.

A semigroups is said to bdeft regular[resp. right reg-
ular] if for eacha € S, there exists am € S such that

a = za® [resp.a = a?x].

are equivalent:
(1) Sis completely regular.

(2) ForeachA € IVBI(S), A(a) =
S.

(3) For eachB € IVLI(S) and eachC € IVRI(S),
B(a) = B(a?) andC(a) = C(a?) for eacha € S.

Proof. It is clear that (13=(3) by Theorem 6.1 and 6.1
Thus it is sufficient to show that(1 (2).

(1) = (2): Suppose the condition (1) holds. Léte
IVBI (S),and leta € S. Then, by Result 6.A(3), there ex-
ists anz € S such thaiw = a?za?. SinceA € IVBI(9),
AL(a) = AL (aza?) > AL (a®) A AL(a?) = AL(a?) >
AE(a) A A (a) = AL (a). By the similar arguments, we
have thatd! (a) > AY(a). HenceA(a) = A(a?).

(2) = (1): Suppose the condition (2) holds.
eachx € S, let B[z] denote the principal bi-ideal of
generated byr, i.e., Blz] = {z} U {22} U 2Sz. Let
a € S. Then, by Theorem 3.8y p[.2], X B[] € IVBI(S).
Sincea® € Bla?], xpja2)(a) = XBl2z(a?) = 1. Thus

A(a?) for eacha €

For

For characterizations of such a semigroup, see [2, Theorent Bla?] = {a*} U{a*} Ua*Sa®. HenceS is completely

4.2]. It is well-known[2, Theorem 4.3.] theff is com-
pletely regular if and only if it is left and right regular.

Result 6.A. [13, p. 105]Let S be a semigroup. Then the
followings are equivalent:

(1) S iscompletely regular.
(2) Sisaunion of groups.
(3) a € a®>Sa?® for eacha € S.

Theorem 6.1. Let S be a semigroup. Thesiis left regular
if and only if, for eachA € IVLI(S), A(a) = A(a?) for
eacha € S.

Proof. (=): SupposeS is left regular. LetA €

regular. This completes the proof. O

Result 6.B. [9, Theorem 1]Let S be a semigroup. Then
S is a semilattice of groups if and only if BI(S) is a semi-
|attice under the multiplication of subsets.

Theorem 6.3. Let S be a semigroup. Thef is a semi-
lattice of groups if and only if for eackl € IVBI(S),
A(a) = A(a?) and A(ab) = A(ba) for anya,b € S.

Proof. (=): Supposes is a semilattice of groups. Then
S is a union of groups. By Result 6.4, is completely reg-
ular. LetA € IVBI(S), and leta € S. Then, by Theorem
6.2,A(a) = A(a®). Now leta, b € S. Then, by the process
of the proof of Theorem 6 in [7], there exists are S such

IVLI (S), and leta € S. Then, by the hypothesis, therethat (ab)? = (ba)z(ba). Thus AL(ab) = AL((ab)3) =

exists anr € S such thata = za®. SinceA € IVLI (9),
Al(a) = Al(za?) > AL(a®) > AL(a) and AY(a) =
AY(xa?) > AY(a?) > AY(a). HenceA(a) = A(a?), for
eacha € S.

(«<): Suppose the necessary condition holds.d_etS.
Then, by Theorem 3.4(xr[s2], XL[a2]c) € IVLI(S).
Sincea® € L[aQ}, (XL[az](a) = XL[az](a2) = 1. Then
a € Lla®] = {a®} U Sa®. HenceS is left regular. This
completes the proof. O

Theorem 6.1’ [The dual of Theorem 6.1] Let S be a
semigroup. Therd is right regular if and only if for each
A € IVRI(S), A(a) = A(a?) for eacha € S.

AL ((ba)x(ba)) > AL(ba) A AL(ba) = AL(ba). By the
similar arguments, we have that’ (ab) > AY (ba). Sim-
ilarly, we can see thatl’(ba) > AL (ab) and AY (ba) >
AU (ab). SoA(ab) = A(ba). Hence the necessary condi-
tions hold.

(«<): Suppose the necessary conditions hold. Then,
by the first condition and Theorem 6.8, is completely
regular. Thus it is easily shown that is idempotent
for eachA € BI(S). Let A,B € BI(S), and lett €
BA. Then there exisu € A andb € B such that
t = ab. MoreoverB[t] = Blab] € BI(S). By The-
orem 3.8, [xBas]> XBlab)] € IVBI(S). By the hypoth-
esis, [XBlab]> XBlab)] (aD) = [XB[ab), XBla]](ba). Since
ab € Blab], xp[ap)(ab) = XB[ap)(ba) = 1. Thenba €

Now we give another characterization of a completelyB[ab] = {ab} U {abab} U abSab. It follows from the pro-

regular semigroup by interval-valued fuzzy bi-ideals.
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cess of the proof of Theorem 6 in [7] thBtA = AB.
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So (BI(S),-) is a commutative idempotent semigroup.,by the process of the proof of Theorem 6.3 in [8], we
Hence, by Result 6.BS is a semilattice of groups. This have AB = BA. Hence, by Result 6.AS is a semilat-
completes the proof. O tice of left simple semigroups. This completes the praof.

Corollary 6.4. Let S be an idempotent semigroup. Then
S is commutative if and only if for eacll € IVBI(S),
A(ab) = A(ba) foranya,b € S.

7. Semigroups that are semilattices of left
[resp. right] simple semigroups

Result 7.A. [9, Theorem 7 and 18, Theoreml.et S bea
semigroup. Then the followings are equivalent :

(1) S isasemilattice of left simple semigroups.

(2) Sisleftregular and AB = BA for any two left ideals
Aand B of S.

(3) Sisleft regular and every left ideal of it isan ideal of
S.

Theorem 7.2’ [The dual of Theorem 7.2] Let S be
a semigroup. Then th&' is a semilattice of right sim-
ple semigroups if and only if for eacd < IVRI(S),
A(a) = A(a?) andA(ab) = A(b) for anya, b € S.

8. Left [resp. right] simple semigroups

Definition 8.1. A semigroupsS is said to benterval-valued
fuzzy left simple[resp.interval-valued fuzzy right simple] if
every IVLI [resp. IVRI] of S is a constant mapping and is
said to benterval-valued fuzzy simpleif every IVI of S'is

a constant mapping.

Theorem 8.2. Let S be a semigroup. Thefiis left simple
if and only if S is interval-valued fuzzy left simple.

Proof. (=): Supposé is left simple. Letd € IVLI (5),
and leta, b € S. SinceS is left simple, from [2, p.6], there

The following result can be proved in a similar way as irbxistx y € S such thaty — za anda = yb. SinceA

the proof of Theorem 4.2 and 4.2

Theorem 7.1. Let S be a left [resp. right] regular semi-
group. ThenS is left [resp. right] duo if and only ifS is
IVLD [resp. IVRD].

IVLI (S), AE(a) = AL(yb) > AE(b) = AL (za) > AL(a)
and AY(a) = AY(yb) > AY(b) = AY(za) > AY(a).
ThusA(a) = A(b). SO0 A is a constant mapping. Henge
is interval-valued fuzzy left simple.

(«): Suppose the necessary condition holds. Adie

The characterization of a semigroup that is a semilatticany left ideal ofS. By Theorem 3.4|x 4, xa] € IVLI (S).
of left simple semigroups can be founded in [13, TheorerBy the hypothesisx 4, xa] is a constant mapping. Since

11.4.9].

Theorem 7.2. Let S be a semigroup. Thefi is a semi-
lattice of left simple semigroups if and only if for each
A € VLI (S), A(a) = A(a?) and A(ab) = A(ba) for
anya,b € S.

Proof. (=-): SupposeS is a semilattice of left sim-
ple semigroups. Le#d € IVLI(S), and leta,b € S.
Then, by Result 7.AS is left regular. By Theorem 6.1,
A(a) = A(a?). By the hypothesis and Result 6.5, is
left duo. By Theorem 7.1S is IVLD. Then A € IVI(S).
Thus A% (ab) = AX((ab?)) = AF(a(ba)b) > A% (ba)
and AY (ab) = AY((ab?)) = AY(a(ba)b) > AY(ba).
By the similar arguments, we haw&’(ba) > AL(ab)
and AY (ba) > AY(ab). HenceA(ab) = A(ba) for any
a,besS.

(<):
by the first condition and Theorem 7.%,is left regular.
Let A and B be any left ideals ofS and letz € AB.
Then there exist € A andb € B such thatr = ab.
By Theorem 3.4,[x1pa) Xzppa)] € IVLI(S). Since
ba € Libal, Xr[pa(ab) XLpa)(ba) = 1. Thus
ab € L[ba] = {ba} U Sba C BAUSBA C BA. So

A # 0, [xa,xa] = 1. Thenxa(a) = 1 for eacha € S.
Thusa € A for eacha € S, i.e.,S C A. HenceS is left
simple. This completes the proof. a

The following two results can be seen in a similar way
as in the proof of Theorem 8.2.

Theorem 8.2" [The dual of Theorem 8.2] Let S be a
semigroups. Therd' is right simple if and only ifS is
interval-valued fuzzy simple.

Theorem 8.3. Let S be a semigroup. Thef is simple if
and only if S is interval-valued fuzzy simple.

Itis well-known that a semigrou§ is a group if and only
if it is left and right simple. Thus from this and Theorem

Suppose the necessary conditions hold. The®.2 and 8.2 we obtain the following result :

Theorem 8.4. Let S be a semigroup. Thefi is a group if
and only ifS is both interval-valued fuzzy left and interval-
valued fuzzy right simple.

Proposition 8.5. Let S be a left simple semigroup. Then
every IVBI of S is an IVRI of S.

265



International Journal of Fuzzy Logic and Intelligent Systems, vol. 11, no. 4, December 2011

Proof. Let A € IVBI(S), and leta, b € S. [8] , “On fuzzy ideals and fuzzy bi-ideals in semi-
Since S is left simple, there exists am € S groups,”Fuzzy Sets and Systems, vol 5, pp. 203-215,
such thatb = za. Since A € IVBI(S), 1981.

AL(ab) = Al(aza) > AF(a) N Al(a) = AL(a)

and AU (ab) = AU(aza) > AV(a) A AV(a) = AV(a). [9] S. Lajos, “A note on semilattice of groupsicta Sai.
HenceA € IVRI(S). This completes the proof. O Math. Szeged, vol 33, pp. 315-317, 1972.

[10] , “On (m, n)-ideals in regular duo semigroups,”
Corollary 8.6. Let S be a left simple semigroup. Then  Acta Sei. Math. Szeged, vol 28, pp. 261-265., 1967.

every bi-ideal of'is a right ideal ofS. [11] , “Theorems on(1, 1)-ideals in semigroups I-

[I,” K. Marx Univ. Economics Dept. Math., Budapest,
References 1972.

[12] T. K. Mondal, and S. K. Samanta, “Topology of

. u , . interval-valued fuzzy sets[nhdian J.Pure Appl.Math.,
[1] R. Biswas, “Rosenfeld’s fuzzy subgroups with vol 30(1), pp. 20-38, 1999.

interval-valued membership function$;uzzy set and

systerms, vol 63, pp. 87-90, 1995 [13] M. Petrich, “Introduction to SemigroupsZolumbus,

Ohio, 1973.
[2] A. H. Clifford, and G. B. Preston, “The Algebraic the-
ory of semigroups, Vol.1, Math. Surveys No. Afher.

Soc. Providence, R.I., 1961.

[14] L. A. Zadeh, “Fuzzy sets,'nform. and Control, vol
8, pp. 338-353, 1965.

, “The concept of a linguistic variable and its
application to approximate reasoning lyiform. Sci,
vol 8, pp. 199-249, 1975.

[3] J. Y. Choi, S. R. Kim, and K. Hur, “Interval-valued [15]
smooth topological spacesionam Math.J., vol 32(4),
pp. 711-738, 2010.

[4] M. B. Gorzalczany, “A method of inference in approx-
imate reasoning based on interval-values fuzzy sets;”
Fuzzy sets and Systems, vol 21, pp. 1-17, 1987.

Minseok Cheong

Lecturer of Sogang University

Research Area: Poset theory, Graph theory,
Cryptography, etc.

E-mail : macross@sogang.ac.kr

[5] K. Hur, J. G. Lee, and J. Y. Choi, “Interval-valued
fuzzy relations,” em J.Korean Institute of Intelligent
systems, vol 19(3), pp. 425-432, 2009.

Kul Hur the Corresponding Author
Professor of Wonkwang University

[6] H. W. Kang, and K. Hur, “Interval-valued fuzzy sub- ' .
%11‘ Research Area: Fuzzy topology, Fuzzy al-
|
A

groups and ringsHonam. Math. J., vol 32(4), pp. 593-
617, 2010.

gebra, Category, Lattice theory.
E-mail : kulhur@wonkwang.ac.kr

[7] N. Kuroki, “Fuzzy bi-ideals in semigroupsComment. )
Math. Univ. &. Pauli XXVIII-1, pp. 17-21, 1979.

266



