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Abstract

We apply the concept of interval-valued fuzzy sets to theoryof semigroups. We give some properties of interval-valued
fuzzy ideals and interval-valued fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and asemilat-
tice of left [right] simple semigroups or another type of semigroups in terms of interval-valued fuzzy ideals and interval-
valued fuzzy bi-ideals.

Key Words: interval-valued fuzzy set, interval-valued fuzzy semigroup, interval-valued fuzzy ideal, interval-valued
fuzzy bi-ideal, interval-valued fuzzy duo.

1. Introduction

As a generalization of fuzzy sets introduced by
Zadeh[14], he[15] introduced the concept of interval-
valued fuzzy sets. After that time, Gorzalczany[4] ap-
plied it to a method of inference in approximate resoning,
Biswass[1] to group theory and Montal and Samanta[12]
to topology. Recently, Hur et al.[5] introduced the notion
of interval-valued fuzzy relations and obtained some of it’s
properties. Moreover, Choi et al.[3] introduced the concept
of interval-valued smooth topological spaces and studied
it. Kang and Hur[6] investigated interval-valued fuzzy sub-
groups and rings.

In this paper, we apply the notion of interval-valued
fuzzy sets to theory of semigroups. We give some prop-
erties of interval-valued fuzzy ideals and interval-valued
fuzzy bi-ideals, and characterize which is left [right] sim-
ple, left [right] duo and a semilattice of left [right] sim-
ple semigroups or another type of semigroups in terms of
interval-valued fuzzy ideals and interval-valued fuzzy bi-
ideals.

2. Preliminaries

We will list some concepts needed in the later sections.
Let D(I) be the set of all closed subintervals of the

unit interval I = [0, 1]. The elements ofD(I) are gen-
erally denoted by capital lettersM,N, · · ·, and note that
M = [ML,MU ], whereML andMU are the lower and
the upper end points respectively. Especially, we denoted ,

Manuscript received Sep. 27, 2011; received Dec. 3, 2011; accepted Dec.
3, 2011.

0 = [0, 0], 1 = [1, 1], anda = [a, a] for everya ∈ (0, 1),
We also note that

(i) (∀ M,N ∈ D(I))
(M = N ⇔ ML = NL,MU = NU ),

(ii) (∀ M,N ∈ D(I))
(M ≤ N ⇔ ML ≤ NL,MU ≤ NU ).

For everyM ∈ D(I), thecomplement of M , denoted by
M c, is defined byM c = 1−M = [1−MU , 1−ML] (See
[12]).

Definition 2.1. [4, 12, 15] A mappingA : X → D(I)
is called aninterval-valued fuzzy set (in short, IVFS) in
X, denoted byA = [AL, AU ], if AL, AU ∈ IX such
thatAL ≤ AU , i.e., AL(x) ≤ AU (x) for eachx ∈ X,
whereAL(x)[resp. AU (x)] is called thelower[resp. up-
per] end point of x to A. For any [a, b] ∈ D(I), the
interval-valued fuzzy setA in X defined byA(x) =
[AL(x), AU (x)] = [a, b] for eachx ∈ X is denoted by
˜[a, b] and ifa = b, then the IVFS̃[a, b] is denoted by simply
ã. In particular,0̃ and 1̃ denote theinterval-valued fuzzy
empty set and theinterval-valued fuzzy whole set in X, re-
spectively.

We will denote the set of all IVFSs inX asD(I)X . It is
clear that setA = [A,A] ∈ D(I)X for eachA ∈ IX .

Definition 2.2. [12] Let A,B ∈ D(I)X and let
{Aα}α∈Γ ⊂ D(I)X . Then:

(i) A ⊂ B iff AL ≤ BL andAU ≤ BU .

(ii) A = B iff A ⊂ B andB ⊂ A.
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(iii) Ac = [1−AU , 1−AL].

(iv) A ∪B = [AL ∨BL, AU ∨BU ].

(iv)′
⋃

α∈Γ

Aα = [
∨

α∈Γ

AL
α,

∨

α∈Γ

AU
α ].

(v) A ∩B = [AL ∧BL, AU ∧BU ].

(v)′
⋂

α∈Γ

Aα = [
∧

α∈Γ

AL
α,

∧

α∈Γ

AU
α ].

Definition 2.3. [6] An interval-valued fuzzy setA in G
is called aninterval-valued fuzzy subgroupoid(in short,
IVGP) in G if

AL(xy) ≥ AL(x) ∧AL(y),

and
AU (xy) ≥ AU (x) ∧AU (y), ∀ x, y ∈ G.

It is clear that0̃, 1̃ ∈ IVGP(G). We will denote the
IVGPs inG as IVGP(G).

Definition 2.4. [6] Let A be an IVFS of a groupG and
[λ, µ] ∈ D(I). Then the subgroupA[λ,µ] is called a[λ, µ]-
level subset of A.

3. Interval-valued fuzzy ideals and bi-ideals of
a semigroup

LetS be a semigroup. By asubsemigroup of S we mean
a non-empty subsetA of S such thatA2 ⊂ A and by aleft
[resp. right] ideal ofS we mean a non-empty subsetA of
S such that

SA ⊂ A [resp.AS ⊂ A].

By two-sided ideal or simply ideal we mean a subsetA of
S which is both a left and a right ideal ofS. A semigroupS
is said to beleft[resp.right] simple if S itself is the only left
[resp. right] ideal ofS. S is said to besimple if it contains
no proper ideal.

Definition 3.1. Let S be a semigroup and letA ∈ D(I)S .
ThenA is called an :

(1) interval-valued fuzzy subsemigroup (in short, IVSG)
of S if

AL(xy) ≥ AL(x) ∧AL(y),

and
AU (xy) ≥ AU (x) ∧AU (y)

for anyx, y ∈ S.

(2) interval-valued fuzzy left ideal (in short,IVLI) of S if

AL(xy) ≥ AL(y), andAU (xy) ≥ AU (y)

for anyx, y ∈ S.

(3) interval-valued fuzzy right ideal (in short,IVRI) of S
if

AL(xy) ≥ AL(x), andAU (xy) ≥ AU (x)

for anyx, y ∈ S.

(4) interval-valued fuzzy (two-sided) ideal (in short,IVI)
of S if it is both an interval-valued fuzzy left and an
interval-valued fuzzy right ideal ofS.

We will denote the set or all IVSGs [resp. IVLIs, IVRIs
and IVIs ] of S as IVSG(S) [resp. IVLI(S), IVRI(S) and
IVI(S)].

It is clear thatA ∈ IVI(S) if and only if

AL(xy) ≥ AL(x) ∧AL(y),

and
AU (xy) ≥ AU (x) ∧AU (y)

for anyx, y ∈ S, and ifA ∈ IVLI (S)[resp. IVRI(S) and
IVI (S)], thenA ∈ IVSG(S).

Remark 3.2. Let S be a semigroup.

(a) If A is a fuzzy subsemigroup of S, then

A = [A,A] ∈ IVSG(S).

(b) If A ∈ IVSG(S) [resp. IVI (S), IVLI (S) and
IVRI(S)], then AL and AU are fuzzy subsemigroup
[resp. ideal, left ideal and right ideal] of S.

Result 3.A. [6, Proposition 3.7]Let A be a non-empty
subset of a groupoid S. A is a subgroupoid of S if and only
if [χA, χA] ∈ IVGP(S).

The following is the immediate result of Definition 3.1
and Result 3.A.

Theorem 3.3. LetA be a non-empty subset of a semigroup
S. ThenA is a subsemigroup ofS if and only if [χA, χA] ∈
IVSG(S).

Result 3.B. [6, Proposition 6.6]Let R be a ring. Then A
is an ideal [resp. a left ideal and a right ideal] of R if and
only if [χA, χA] ∈ IVI (R) [resp. IVLI (R) and IVRI(R)].

The following is the immediate result of Definition 3.1
and Result 3.B.

Theorem 3.4. LetA be a nonempty subset of a semigroup
S. ThenA is an ideal [resp. a left ideal and a right ideal]
of S if and only if [χA, χA] ∈ IVI (S) [resp. IVLI(S) and
IVRI(S)].

Proposition 3.5. Let S be a semigroup. IfA ∈
IVSG(S)[resp. IVI(S), IVLI (S) and IVRI(S)], then
A[λ,µ] is a subsemigroup [resp. ideal, left ideal and right
ideal] ofS.
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The following result is the converse of Proposition 3.5:

Proposition 3.6. LetS be a semigroup and letA ∈ D(I)S .
If A[λ,µ] is a subsemigroup [resp. ideal, left ideal and
right ideal ] of S for each [λ, µ] ∈ D(I), then A ∈
IVSG(S)[resp. IVI(S), IVLI (S) and IVRI(S)].

Proof. SupposeA[λ,µ] is a subsemigroup ofS for each
[λ, µ] ∈ D(I). For anyx, y ∈ S, let A(x) = [λ1, µ1]
and letA(y) = [λ2, µ2]. ThenAL(x) = λ1 ≥ λ1 ∧ λ2,
AU (x) = µ1 ≥ µ1 ∧ µ2 andAL(y) = λ2 ≥ λ1 ∧ λ2,
AU (y) = µ2 ≥ µ1 ∧ µ2. Thusx, y ∈ A[λ1∧λ2,µ1∧µ2].
Since[λ1 ∧ λ2, µ1 ∧ µ2] ∈ D(I), by the hypothesis,xy ∈
A[λ1∧λ2,µ1∧µ2]. ThenAL(xy) ≥ λ1 ∧ λ2 = AL(x) ∧
AL(y) andAU (xy) ≥ µ1 ∧ µ2 ≥ AU (x) ∧AU (y). Hence
A ∈ IVSG(S).

Now supposeA[λ,µ] is a left ideal ofS for each[λ, µ] ∈
D(I). For eachy ∈ S, letA(y) = [λ, µ]. Then clearlyy ∈
A[λ,µ]. Let x ∈ S. Then, by the hypothesis,xy ∈ A[λ,µ].
ThusAL(xy) ≥ λ = AL(y) andAU (xy) ≥ µ = AU (y).
HenceA ∈ IVLI (S).

Also, we easily see the rest. This completes the proof.
�

A subsemigroupA of a semigroupS is called abi-ideal
of S if ASA ⊂ A. We will denote the set of all bi-ideals of
S as BI(S).

Definition 3.7. Let S be a semigroup and letA ∈
IV SG(S). ThenA is called aninterval-valued fuzzy bi-
ideal (in short,IVBI) of S if

AL(xyz) ≥ AL(x) ∧AL(z),

and
AU (xyz) ≥ AU (x) ∧AU (z)

for anyx, y, z ∈ S.

We will denote the set of all IVBIs ofS as IVBI(S).
The following result shows that the concept of an IVBI in
a semigroup is an extended one of a bi-ideal.

Theorem 3.8. LetA be a non-empty subset of a semigroup
S. ThenA is a bi-ideal ofS if and only if [χA, χA] ∈
IVBI (S).

Proof. (⇒): SupposeA ∈ BI(S) and letx, y, z ∈ S.
Case (i): Supposex ∈ A andz ∈ A. ThenχA(x) =

χA(z) = 1. SinceA is a bi-ideal ofS, xyz ∈ ASA ⊂ A.
ThusχA(xyz) = 1 = χA(x) ∧ χA(z).

Case (ii): Supposex /∈ A or z /∈ A. ThenχA(x) = 0
or χA(z) = 0. ThusχA(xyz) ≥ 0 = χA(x) ∧ χA(z).
So, in either cases,χA(xyz) ≥ χA(x)∧χA(z). Moreover,
by Theorem 3.2,[χA, χA] ∈ IVSG(S). Hence[χA, χA] ∈
IVBI (S).

(⇐): Suppose[χA, χA] ∈ IVBI (S). Let t ∈ ASA.
Then there existx, z ∈ A and y ∈ S such that

t = xyz. Sincex, z ∈ A, χA(x) = χA(z) = 1. Since
[χA, χA] ∈ IVBI (S), χA(xyz) ≥ χA(x) ∧ χA(z) = 1.
ThenχA(xyz) = 1. Thust = xyz ∈ A. SoASA ⊂ A.
Moreover, by Theorem 3.3,A is a subsemigroup ofS.
HenceA ∈ BI(S). �

Theorem 3.9. Let S be a semigroup. ThenS is a group if
and only if every IVBI ofS is a constant mapping.

Proof. (⇒): SupposeS is a group with the identitye.
LetA ∈ IVBI (S), and leta ∈ S. Then

AL(a) = AL(eae) ≥ AL(e) ∧AL(e) = AL(e)

= AL(ee) = AL((aa−1)(a−1a))

= AL(a(a−1a−1)a) ≥ AL(a) ∧AL(a)

== AL(a).

By the similar arguments, we have thatAU (a) ≥ AU (a).
ThusA(a) = A(e). HenceA is a constant mapping.

(⇐): Suppose the necessary condition holds. Assume
thatS is not a group. Then it follows from p.84 in [2] that
S contains a proper bi-idealA of S. Then there exists an
x ∈ S such thatx /∈ A. Let y ∈ A with y 6= x. SinceA
is a bi-ideal ofS, by Theorem 3.8,[χA, χA] ∈ IVBI (S).
By the hypothesis,[χA, χA] is a constant mapping. Thus
[χA, χA](x) = [χA, χA](y), i.e.,χA(x) = χA(y). Since
x /∈ A and y ∈ A, χA(x) = 0 < χA(y) = 1, i.e.,
[χA, χA](x) = [0, 0] 6= [1, 1] = [χA, χA](y). This is a
contradiction. HenceS is a group. This completes the
proof. �

Proposition 3.10. Every IVLI[resp. IVRI and IVI] ofS is
an IVBI of S.

Proof. SupposeA ∈ IVLI (S), and letx, y, z ∈ S. Then
AL(xyz) = AL((xy)z) ≥ AL(z) ≥ AL(x) ∧ AL(z) and
AU (xyz) = AU ((xy)z) ≥ AU (z) ≥ AU (x) ∧ AU (z). So
A ∈ IVBI (S). Similarly, we can see that the other cases
hold. �

Theorem 3.11. Let S be a semigroup and letA ∈ D(I)S .
ThenA ∈ IVBI (S) if and only if A[λ,µ] ∈ BI(S) for each
[λ, µ] ∈ D(I).

Proof. (⇒): SupposeA ∈ IV BI(S), and let[λ, µ] ∈
D(I). SinceA ∈ IVSGS, by Proposition 3.5,A[λ, µ] is a
subsemigroup ofS. Let t ∈ A[λ, µ]SA[λ, µ]. Then there
existx, z ∈ A[λ,µ] andy ∈ S such thatt = xyz. Since
A ∈ IVBI (S), we have

AL(t) ≥ AL(x) ∧AL(z) ≥ λ,

and
AU (t) ≥ AU (x) ∧AU (y) ≥ µ.
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Thus t ∈ A[λ,µ]. So A[λ,µ]SA[λ,µ] ⊂ A[λ,µ]. Hence
A[λ,µ] ∈ BI(S).

(⇐): Suppose the necessary condition holds. Since
A[λ, µ] is a subsemigroup ofS, by Proposition 3.6,A ∈
IVSG(S). For anyx, z ∈ S, let A(x) = [λ1, µ1] and
let A(z) = [λ2, µ2]. Then, by the process of the proof of
Proposition 3.6,x, z ∈ A[λ1∧λ2, µ1∧µ2]. Let y ∈ S. Then,
by the hypothesis,xyz ∈ A[λ1∧λ2, µ1∧µ2]. Thus

AL(xyz) ≥ λ1 ∧ λ2 = AL(x) ∧AL(z),

and
AU (xyz) ≥ µ1 ∧ µ2 ≤ AU (x) ∧AU (z).

HenceA ∈ IVBI (S). This completes the proof. �

4. Interval-valued fuzzy duos, ideals and
bi-ideals of a regular semigroup

A semigroupS is said to beregular of for eacha ∈ S
there exists anx ∈ S such thata = axa.

A semigroupS is said to beleft duo[resp. right duo] if
every left [resp. right] ideal ofS is a two-sided ideal ofS.

A semigroupS is said to beduo if it is both left and right
duo.

Definition 4.1. A semigroupS is said to be :

(1) interval-valued fuzzy left duo(in short,IVLD) if every
IVLI of S is an IVI of S.

(2) interval-valued fuzzy right duo(in short,IVRD) if ev-
ery IVRI of S is an IVI of S.

(3) interval-valued fuzzy duo(in short, IVD) if it is both
interval-valued fuzzy left and interval-valued fuzzy
right duo.

Theorem 4.2. LetS be a regular semigroup. ThenS is left
duo if and only ifS is IVLD.

Proof. (⇒): SupposeS is left duo. LetA ∈ IVLI (S)
and leta, b ∈ S. Then, by the process of the proof of
Theorem 3.1 in [8],ab ∈ (aSa)b ⊂ (Sa)S ⊂ Sa. Thus
there exists anx ∈ S such thatab = xa. SinceA ∈
IVLI (S),

AL(ab) = AL(xa) ≥ AL(a),

and
AU (ab) = AU (xa) ≥ AU (a).

ThenA ∈ IVRI(S). ThusA ∈ IVI (S). HenceS is IVLD.
(⇐): SupposeS is IVLD, and letA be any left ideal

of S. Then, by Theorem 3.4,[χA, χA] ∈ IVLI (S). By
the assumption,[χA, χA] ∈ IVI (S). SinceA 6= ∅, by
Theorem 3.4,A is an ideal ofS. HenceS is left duo. This

completes the proof. �

Theorem 4.2.′ [The dual of Theorem 4.2] Let S be a
regular semigroup. Then S is right duo if and only if S is
IVRD.

The following is the immediate result of Theorem 4.2
and 4.2′.

Theorem 4.3. Let S be a regular semigroup. ThenS is
duo if and only ifS is IVD.

Theorem 4.4. Let S be a regular semigroup. Then every
bi-ideal ofS is a right ideal ofS if and only if every IVBI
of S is an IVRI ofS.

Proof. (⇒): Suppose every bi-ideal ofS is a right ideal
of S. Let A ∈ IVBI (S) and leta, b ∈ S. Then, by the
process of proof of Theorem 3.4 in [8],ab ∈ (aSa)S ⊂
aSa. Thus there exists anx ∈ S such thatab = axa.
SinceA ∈ IVBI (S), we have

AL(ab) = AL(axa) ≥ AL(a) ∧AL(a) = AL(a),

and

AU (ab) = AU (axa) ≥ AU (a) ∧AU (a) = AU (a).

HenceA ∈ IVRI(S).
(⇐): Suppose that every IVBI ofS is an IVRI of

S, and let A be any bi-ideal ofS. Then, by Theo-
rem 3.8, [χA, χA] ∈ IVBI (S). By the assumption,
[χA, χA] ∈ IVRI(S). SinceA 6= ∅, by Theorem 3.4,A is
a right ideal ofS. This completes the proof. �

Result 4.A. [11, Theorem 3]Every bi-ideal of a regular
left duo semigroup S is a right ideal of S.

Corollary 4.5. Let S be a regular duo semigroup. Then
every IVBI of S is a IVRI of S.

Proof. By Result 4.A, every bi-ideal ofS is a right ideal
of S. Hence, by Theorem 4.3, it follows that every IVBI of
S is an IVRI ofS. �

Theorem 4.4.′ [The dual of Theorem 4.4] Let S be a
regular semigroup. Then every bi-ideal of S is a left ideal
of S if and only if every IVBI of S is an IVLI of S.

The following is the immediate result of Theorem 4.4
and 4.4′.

Theorem 4.6. Let S be a regular duo semigroup. Then
every bi-ideal ofS is an ideal ofS if and only if every
IVBI of S is an IVI of S.

262



Interval-valued Fuzzy Ideals and Bi-ideals of a Semigroup

A semigroupS is called asemilattice of groups [2] if
it is the set-theoretical union of a set of mutually disjoint
subgroupsGα(α ∈ Γ), i.e.,S =

⋃
α∈Γ Gα such that for

anyα, β ∈ Γ, GαGβ ⊂ Gγ andGβGα ⊂ Gγ for some
γ ∈ Γ.

Result 4.B. [10, Theorem 4]Every bi-ideal of a semi-
group S which is a semilattice of groups, is an ideal of
S.

The following is the immediate result of Result 4.B and
Theorem 4.6.

Corollary 4.7. LetS be a semigroup which is a semilattice
of groups. Then every IVBI ofS is an IVI of S.

We denote byL[a] [resp. J [a]] the principle left [resp.
two-sided] ideal of a semigroupS generated bya in S, i.e.,

L[a] = {a} ∪ Sa,

and
J [a] = {a} ∪ Sa ∪ aS ∪ SaS.

It is well-known [2, Lemma 2.13] that ifS is a regular
semigroup, thenL[a] = Sa for eacha ∈ S.

A semigroupS is said to beright zero[resp. left zero] if
xy = y[resp.xy = x] for anyx, y ∈ S.

Theorem 4.8. Let S be a regular semigroup and letES

the set of all idempotent elements ofS. ThenES forms
a left zero subsemigroup ofS if and only if for each
A ∈ IVLI (S), A(e) = A(f) for any e, f ∈ ES , where
ES denotes the set of all idempotent elements ofS.

Proof. (⇒): SupposeES forms a left zero subsemi-
group ofS. LetA ∈ IVLI (S), and lete, f ∈ ES . Then, by
the hypothesis,ef = e andfe = f . SinceA ∈ IVLI (S),
we have

AL(e) = AL(ef) ≥ fL = AL(fe) ≥ AL(e),

and

AU (e) = AU (ef) ≥ fU = AU (fe) ≥ AU (e).

HenceA(e) = A(f).
(⇐): Suppose the necessary condition holds. SinceS is

regular,ES 6= ∅. Let e, f ∈ ES . Then, by Theorem 3.4,
[χL[f ], χL[f ]] ∈ IVLI (S). ThusχL[f ](e) = χL[f ](f) = 1.
Soe ∈ L[f ] = Sf . Then there exists anx ∈ S such that
e = xf = xff = ef . HenceES is a left zero semigroup.
This completes the proof. �

Corollary 4.9. Let S be an idempotent semigroup. Then
S is left zero if and only if for eachA ∈ IVLI (S), A(e) =
A(f) for anye, f ∈ S.

Theorem 4.8.′ [The dual of Theorem 4.8]LetS be a reg-
ular semi group. ThenES forms a right zero subsemigroup
of S if and only if for eachA ∈ IVRI(S), A(e) = A(f) for
anye, f ∈ ES .

Corollary 4.9.′ [The dual of Corollary 4.9] Let S be an
semigroup. ThenS is right zero if and only if for each
A ∈ IVRI(S), A(e) = A(f) for anye, f ∈ S.

Theorem 4.10. Let S be a regular semigroup. ThenS is a
group if and only if for eachA ∈ IVBI (S), A(e) = A(f)
for anye, f ∈ ES .

Proof. (⇒): SupposeS is a group. LetA ∈ IVBI (S).
Then, by Theorem 3.8,A is a constant mapping. Hence
A(e) = A(f) for anye, f ∈ ES .

(⇐): Suppose the necessary condition holds. Let
e, f ∈ ES . Let B[x] denote the principal bi-ideal ofS
generated byx in S, i.e.,B[x] = {x} ∪ {x2} ∪ xSx [2,
p.84]. Moreover, ifS is regular, thenB[x] = xSx for each
x ∈ S. Then, by Theorem 3.8,[χB[f ], χB[f ]] ∈ IVBI (S).
Since f ∈ B[f ], χB[f ](e) = χB[f ](f) = 1. Then
e ∈ B[f ] = fSf . Thus, by the process of the proof of
Theorem 3.14 in [8],e = f . SinceS is regular,Es 6= ∅
andS contains exactly one idempotent. So it follows from
[2, p.33(Ex. 4)] thatS is a group. This completes the
proof. �

5. Intra-regular semigroups

A semigroupS is said to beintra-regular if for each
a ∈ S, there existx, y ∈ S such thata = xa2y. For
characterization of such a semigroup, see [2, Theorem 4.4]
and [13, II.4.5 Theorem].

Theorem 5.1. Let S be a semigroup. ThenS is intra-
regular if and only if for eachA ∈ IVI (S), A(a) = A(a2)
for eacha ∈ S.

Proof. (⇒): SupposeS is intra-regular. LetA ∈
IVI (S), and leta ∈ S. Then, by the hypothesis, there exist
x, y ∈ S such thata = xa2y. SinceA ∈ IVI (S), we have

AL(a) = AL(xa2y) ≥ AL(xa2) ≥ AL(a2) ≥ AL(a),

and

AU (a) = AU (xa2y) ≥ AU (xa2) ≥ AU (a2) ≥ AU (a).

HenceA(a) = A(a2) for eacha ∈ S.
(⇐): Suppose the necessary condition holds and let

a ∈ S. Then, by Theorem 3.4,[χJ[a2], χJ[a2]] ∈ IVI (S).
Sincea2 ∈ J [a2], χJ[a2](a) = χJ[a2](a

2) = 1. Thus
a ∈ J [a2] = {a} ∪ Sa2 ∪ a2S ∪ Sa2S. So we can easily
see thatS is intra-regular. This completes the proof. �

263



International Journal of Fuzzy Logic and Intelligent Systems, vol. 11, no. 4, December 2011

Proposition 5.2. Let S be an intra-regular semigroup.
Then for eachA ∈ IVI (S), A(ab) = A(ba) for any
a, b ∈ S.

Proof. Let A ∈ IVI (S), and leta, b ∈ S. Then, by The-
orem 5.1,AL(ab) = AL((ab)2) = AL(a(ba)b) ≥ AL(ba)
= AL((ba)2) = AL(b(ab)a) ≥ AL(ab). By the similar
arguments, we have thatAU (ab) ≥ AU (ab). Thus
A(ab) = A(ba). This completes the proof. �

6. Completely regular semigroups

A semigroupS is said to becompletely regular if for
eacha ∈ S, there exists anx ∈ S such that

a = axa andax = xa.

A semigroupS is said to beleft regular[resp. right reg-
ular] if for eacha ∈ S, there exists anx ∈ S such that

a = xa2 [resp.a = a2x].

For characterizations of such a semigroup, see [2, Theorem
4.2.]. It is well-known[2, Theorem 4.3.] thatS is com-
pletely regular if and only if it is left and right regular.

Result 6.A. [13, p. 105]Let S be a semigroup. Then the
followings are equivalent:

(1) S is completely regular.

(2) S is a union of groups.

(3) a ∈ a2Sa2 for each a ∈ S.

Theorem 6.1. LetS be a semigroup. ThenS is left regular
if and only if, for eachA ∈ IVLI (S), A(a) = A(a2) for
eacha ∈ S.

Proof. (⇒): SupposeS is left regular. LetA ∈
IVLI (S), and leta ∈ S. Then, by the hypothesis, there
exists anx ∈ S such thata = xa2. SinceA ∈ IVLI (S),
AL(a) = AL(xa2) ≥ AL(a2) ≥ AL(a) andAU (a) =
AU (xa2) ≥ AU (a2) ≥ AU (a). HenceA(a) = A(a2), for
eacha ∈ S.

(⇐): Suppose the necessary condition holds. Leta ∈ S.
Then, by Theorem 3.4,(χL[a2], χL[a2]c) ∈ IVLI (S).
Sincea2 ∈ L[a2], (χL[a2](a) = χL[a2](a

2) = 1. Then
a ∈ L[a2] = {a2} ∪ Sa2. HenceS is left regular. This
completes the proof. �

Theorem 6.1,′ [The dual of Theorem 6.1] Let S be a
semigroup. ThenS is right regular if and only if for each
A ∈ IVRI(S), A(a) = A(a2) for eacha ∈ S.

Now we give another characterization of a completely
regular semigroup by interval-valued fuzzy bi-ideals.

Theorem 6.2. Let S be a semigroup. Then the followings
are equivalent:

(1) S is completely regular.

(2) For eachA ∈ IVBI (S), A(a) = A(a2) for eacha ∈
S.

(3) For eachB ∈ IVLI (S) and eachC ∈ IVRI(S),
B(a) = B(a2) andC(a) = C(a2) for eacha ∈ S.

Proof. It is clear that (1)⇔(3) by Theorem 6.1 and 6.1′.
Thus it is sufficient to show that(1)⇔ (2).

(1) ⇒ (2): Suppose the condition (1) holds. LetA ∈
IVBI (S),and leta ∈ S. Then, by Result 6.A(3), there ex-
ists anx ∈ S such thata = a2xa2. SinceA ∈ IVBI (S),
AL(a) = AL(a2xa2) ≥ AL(a2) ∧ AL(a2) = AL(a2) ≥
AL(a) ∧ AL(a) = AL(a). By the similar arguments, we
have thatAU (a) ≥ AU (a). HenceA(a) = A(a2).

(2) ⇒ (1): Suppose the condition (2) holds. For
eachx ∈ S, let B[x] denote the principal bi-ideal ofS
generated byx, i.e., B[x] = {x} ∪ {x2} ∪ xSx. Let
a ∈ S. Then, by Theorem 3.8,[χB[a2], χB[a2]] ∈ IVBI (S).
Sincea2 ∈ B[a2], χB[a2](a) = χB[a2](a

2) = 1. Thus
a ∈ B[a2] = {a2}∪{a4}∪a2Sa2. HenceS is completely
regular. This completes the proof. �

Result 6.B. [9, Theorem 1]Let S be a semigroup. Then
S is a semilattice of groups if and only if BI(S) is a semi-
lattice under the multiplication of subsets.

Theorem 6.3. Let S be a semigroup. ThenS is a semi-
lattice of groups if and only if for eachA ∈ IVBI (S),
A(a) = A(a2) andA(ab) = A(ba) for anya, b ∈ S.

Proof. (⇒): SupposeS is a semilattice of groups. Then
S is a union of groups. By Result 6.A,S is completely reg-
ular. LetA ∈ IVBI (S), and leta ∈ S. Then, by Theorem
6.2,A(a) = A(a2). Now leta, b ∈ S. Then, by the process
of the proof of Theorem 6 in [7], there exists anx ∈ S such
that (ab)3 = (ba)x(ba). ThusAL(ab) = AL((ab)3) =
AL((ba)x(ba)) ≥ AL(ba) ∧ AL(ba) = AL(ba). By the
similar arguments, we have thatAU (ab) ≥ AU (ba). Sim-
ilarly, we can see thatAL(ba) ≥ AL(ab) andAU (ba) ≥
AU (ab). SoA(ab) = A(ba). Hence the necessary condi-
tions hold.

(⇐): Suppose the necessary conditions hold. Then,
by the first condition and Theorem 6.2,S is completely
regular. Thus it is easily shown thatA is idempotent
for eachA ∈ BI(S). Let A,B ∈ BI(S), and lett ∈
BA. Then there exista ∈ A and b ∈ B such that
t = ab. MoreoverB[t] = B[ab] ∈ BI(S). By The-
orem 3.8, [χB[ab], χB[ab]] ∈ IVBI (S). By the hypoth-
esis, [χB[ab], χB[ab]](ab) = [χB[ab], χB[ab]](ba). Since
ab ∈ B[ab], χB[ab](ab) = χB[ab](ba) = 1. Thenba ∈
B[ab] = {ab} ∪ {abab} ∪ abSab. It follows from the pro-
cess of the proof of Theorem 6 in [7] thatBA = AB.
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So (BI(S), ·) is a commutative idempotent semigroup.
Hence, by Result 6.B,S is a semilattice of groups. This
completes the proof. �

Corollary 6.4. Let S be an idempotent semigroup. Then
S is commutative if and only if for eachA ∈ IVBI (S),
A(ab) = A(ba) for anya, b ∈ S.

7. Semigroups that are semilattices of left
[resp. right] simple semigroups

Result 7.A. [9, Theorem 7 and 18, Theorem]Let S be a
semigroup. Then the followings are equivalent :

(1) S is a semilattice of left simple semigroups.

(2) S is left regular and AB = BA for any two left ideals
A and B of S.

(3) S is left regular and every left ideal of it is an ideal of
S.

The following result can be proved in a similar way as in
the proof of Theorem 4.2 and 4.2′.

Theorem 7.1. Let S be a left [resp. right] regular semi-
group. ThenS is left [resp. right] duo if and only ifS is
IVLD [resp. IVRD].

The characterization of a semigroup that is a semilattice
of left simple semigroups can be founded in [13, Theorem
II.4.9].

Theorem 7.2. Let S be a semigroup. ThenS is a semi-
lattice of left simple semigroups if and only if for each
A ∈ IVLI (S), A(a) = A(a2) andA(ab) = A(ba) for
anya, b ∈ S.

Proof. (⇒): SupposeS is a semilattice of left sim-
ple semigroups. LetA ∈ IVLI (S), and leta, b ∈ S.
Then, by Result 7.A,S is left regular. By Theorem 6.1,
A(a) = A(a2). By the hypothesis and Result 6.A,S is
left duo. By Theorem 7.1,S is IVLD. ThenA ∈ IVI (S).
ThusAL(ab) = AL((ab2)) = AL(a(ba)b) ≥ AL(ba)
andAU (ab) = AU ((ab2)) = AU (a(ba)b) ≥ AU (ba).
By the similar arguments, we haveAL(ba) ≥ AL(ab)
andAU (ba) ≥ AU (ab). HenceA(ab) = A(ba) for any
a, b ∈ S.

(⇐): Suppose the necessary conditions hold. Then,
by the first condition and Theorem 7.1,S is left regular.
Let A andB be any left ideals ofS and letx ∈ AB.
Then there exista ∈ A and b ∈ B such thatx = ab.
By Theorem 3.4,[χL[ba], χL[ba]] ∈ IVLI (S). Since
ba ∈ L[ba], χL[ba](ab) = χL[ba](ba) = 1. Thus
ab ∈ L[ba] = {ba} ∪ Sba ⊂ BA ∪ SBA ⊂ BA. So

,by the process of the proof of Theorem 6.3 in [8], we
haveAB = BA. Hence, by Result 6.A,S is a semilat-
tice of left simple semigroups. This completes the proof.�

Theorem 7.2.′ [The dual of Theorem 7.2] Let S be
a semigroup. Then theS is a semilattice of right sim-
ple semigroups if and only if for eachA ∈ IVRI(S),
A(a) = A(a2) andA(ab) = A(b) for anya, b ∈ S.

8. Left [resp. right] simple semigroups

Definition 8.1. A semigroupS is said to beinterval-valued
fuzzy left simple[resp.interval-valued fuzzy right simple] if
every IVLI [resp. IVRI] ofS is a constant mapping and is
said to beinterval-valued fuzzy simple if every IVI of S is
a constant mapping.

Theorem 8.2. LetS be a semigroup. ThenS is left simple
if and only if S is interval-valued fuzzy left simple.

Proof. (⇒): SupposeS is left simple. LetA ∈ IVLI (S),
and leta, b ∈ S. SinceS is left simple, from [2, p.6], there
existx, y ∈ S such thatb = xa anda = yb. SinceA ∈
IVLI (S), AL(a) = AL(yb) ≥ AL(b) = AL(xa) ≥ AL(a)
andAU (a) = AU (yb) ≥ AU (b) = AU (xa) ≥ AU (a).
ThusA(a) = A(b). SoA is a constant mapping. HenceS
is interval-valued fuzzy left simple.
(⇐): Suppose the necessary condition holds. LetA be

any left ideal ofS. By Theorem 3.4,[χA, χA] ∈ IVLI (S).
By the hypothesis,[χA, χA] is a constant mapping. Since
A 6= ∅, [χA, χA] = 1̃. ThenχA(a) = 1 for eacha ∈ S.
Thusa ∈ A for eacha ∈ S, i.e.,S ⊂ A. HenceS is left
simple. This completes the proof. �

The following two results can be seen in a similar way
as in the proof of Theorem 8.2.

Theorem 8.2.′ [The dual of Theorem 8.2] Let S be a
semigroups. ThenS is right simple if and only ifS is
interval-valued fuzzy simple.

Theorem 8.3. Let S be a semigroup. ThenS is simple if
and only ifS is interval-valued fuzzy simple.

It is well-known that a semigroupS is a group if and only
if it is left and right simple. Thus from this and Theorem
8.2 and 8.2′, we obtain the following result :

Theorem 8.4. Let S be a semigroup. ThenS is a group if
and only ifS is both interval-valued fuzzy left and interval-
valued fuzzy right simple.

Proposition 8.5. Let S be a left simple semigroup. Then
every IVBI of S is an IVRI ofS.
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Proof. Let A ∈ IVBI (S), and let a, b ∈ S.
Since S is left simple, there exists anx ∈ S
such that b = xa. Since A ∈ IVBI (S),
AL(ab) = AL(axa) ≥ AL(a) ∧ AL(a) = AL(a)
andAU (ab) = AU (axa) ≥ AU (a) ∧ AU (a) = AU (a).
HenceA ∈ IVRI(S). This completes the proof. �

Corollary 8.6. Let S be a left simple semigroup. Then
every bi-ideal ofS is a right ideal ofS.
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