Interval-valued Fuzzy Ideals and Bi-ideals of a Semigroup

Minseok Cheong¹, and Kul Hur²

 Department of Mathematices, Sogang University, Seoul, 121-742, Korea
Division of Mathematics and Informational Statistics and Nanoscale Science and Technology Institute, Wonkwang University, Jeollabukdo, 579-792, Korea

Abstract

We apply the concept of interval-valued fuzzy sets to theory of semigroups. We give some properties of interval-valued fuzzy ideals and interval-valued fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and a semilattice of left [right] simple semigroups or another type of semigroups in terms of interval-valued fuzzy ideals and interval-valued fuzzy bi-ideals.

Key Words: interval-valued fuzzy set, interval-valued fuzzy semigroup, interval-valued fuzzy ideal, interval-valued fuzzy bi-ideal, interval-valued fuzzy duo.

1. Introduction

As a generalization of fuzzy sets introduced by Zadeh[14], he[15] introduced the concept of intervalvalued fuzzy sets. After that time, Gorzalczany[4] applied it to a method of inference in approximate resoning, Biswass[1] to group theory and Montal and Samanta[12] to topology. Recently, Hur et al.[5] introduced the notion of interval-valued fuzzy relations and obtained some of it's properties. Moreover, Choi et al.[3] introduced the concept of interval-valued smooth topological spaces and studied it. Kang and Hur[6] investigated interval-valued fuzzy subgroups and rings.

In this paper, we apply the notion of interval-valued fuzzy sets to theory of semigroups. We give some properties of interval-valued fuzzy ideals and interval-valued fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and a semilattice of left [right] simple semigroups or another type of semigroups in terms of interval-valued fuzzy ideals and interval-valued fuzzy bi-ideals.

2. Preliminaries

We will list some concepts needed in the later sections. Let D(I) be the set of all closed subintervals of the unit interval I=[0,1]. The elements of D(I) are generally denoted by capital letters M,N,\cdots , and note that $M=[M^L,M^U]$, where M^L and M^U are the lower and the upper end points respectively. Especially, we denoted ,

Manuscript received Sep. 27, 2011; received Dec. 3, 2011; accepted Dec. 3, 2011.

 $\mathbf{0} = [0,0], \, \mathbf{1} = [1,1], \, \text{and} \, \mathbf{a} = [a,a] \, \text{for every} \, a \in (0,1),$ We also note that

$$\begin{array}{c} \text{(i) } (\forall \, M, N \in D(I)) \\ (M = N \Leftrightarrow M^L = N^L, M^U = N^U), \end{array}$$

$$\begin{aligned} \text{(ii)} \ \ & (\forall \ M, N \in D(I)) \\ & (M \leq N \Leftrightarrow M^L \leq N^L, M^U \leq N^U). \end{aligned}$$

For every $M \in D(I)$, the *complement* of M, denoted by M^c , is defined by $M^c = 1 - M = [1 - M^U, 1 - M^L]$ (See [12]).

Definition 2.1. [4, 12, 15] A mapping $A: X \to D(I)$ is called an *interval-valued fuzzy set* (in short, *IVFS*) in X, denoted by $A = [A^L, A^U]$, if $A^L, A^U \in I^X$ such that $A^L \leq A^U$, i.e., $A^L(x) \leq A^U(x)$ for each $x \in X$, where $A^L(x)$ [resp. $A^U(x)$] is called the *lower*[resp. *upper*] end point of x to A. For any $[a,b] \in D(I)$, the interval-valued fuzzy set A in X defined by $A(x) = [A^L(x), A^U(x)] = [a,b]$ for each $x \in X$ is denoted by [a,b] and if a=b, then the IVFS[a,b] is denoted by simply [a,b] and if [a,b] and [a,b] denote the *interval-valued fuzzy empty set* and the *interval-valued fuzzy whole set* in X, respectively.

We will denote the set of all IVFSs in X as $D(I)^X$. It is clear that set $A = [A, A] \in D(I)^X$ for each $A \in I^X$.

Definition 2.2. [12] Let $A, B \in D(I)^X$ and let $\{A_{\alpha}\}_{{\alpha}\in\Gamma}\subset D(I)^X$. Then:

$$(i) \quad A \subset B \text{ iff } A^L \leq B^L \text{ and } A^U \leq B^U.$$

(ii)
$$A = B \text{ iff } A \subset B \text{ and } B \subset A.$$

(iii)
$$A^c = [1 - A^U, 1 - A^L].$$

$$(iv) \quad A \cup B = [A^L \vee B^L, A^U \vee B^U].$$

$$(iv)' \bigcup_{\alpha \in \Gamma} A_{\alpha} = [\bigvee_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigvee_{\alpha \in \Gamma} A_{\alpha}^{U}].$$

$$(v) \quad A \cap B = [A^L \wedge B^L, A^U \wedge B^U].$$

$$(v)' \bigcap_{\alpha \in \Gamma} A_{\alpha} = [\bigwedge_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigwedge_{\alpha \in \Gamma} A_{\alpha}^{U}].$$

Definition 2.3. [6] An interval-valued fuzzy set A in G is called an *interval-valued fuzzy subgroupoid*(in short, IVGP) in G if

$$A^{L}(xy) \ge A^{L}(x) \wedge A^{L}(y),$$

and

$$A^{U}(xy) \ge A^{U}(x) \wedge A^{U}(y), \ \forall \ x, y \in G.$$

It is clear that $\widetilde{0},\widetilde{1}\in \mathrm{IVGP}(G)$. We will denote the IVGPs in G as IVGP(G).

Definition 2.4. [6] Let A be an IVFS of a group G and $[\lambda, \mu] \in D(I)$. Then the subgroup $A^{[\lambda, \mu]}$ is called a $[\lambda, \mu]$ -level subset of A.

3. Interval-valued fuzzy ideals and bi-ideals of a semigroup

Let S be a semigroup. By a subsemigroup of S we mean a non-empty subset A of S such that $A^2 \subset A$ and by a left [resp. right] ideal of S we mean a non-empty subset A of S such that

$$SA \subset A$$
 [resp. $AS \subset A$].

By two-sided ideal or simply ideal we mean a subset A of S which is both a left and a right ideal of S. A semigroup S is said to be left[resp. right] simple if S itself is the only left [resp. right] ideal of S. S is said to be simple if it contains no proper ideal.

Definition 3.1. Let S be a semigroup and let $A \in D(I)^S$. Then A is called an :

(1) interval-valued fuzzy subsemigroup (in short, IVSG) of S if

$$A^L(xy) \ge A^L(x) \wedge A^L(y),$$

and

$$A^{U}(xy) \ge A^{U}(x) \wedge A^{U}(y)$$

for any $x, y \in S$.

(2) interval-valued fuzzy left ideal (in short, IVLI) of S if

$$A^{L}(xy) \ge A^{L}(y)$$
, and $A^{U}(xy) \ge A^{U}(y)$

for any $x, y \in S$.

(3) interval-valued fuzzy right ideal (in short, IVRI) of S if

$$A^L(xy) \ge A^L(x)$$
, and $A^U(xy) \ge A^U(x)$

for any $x, y \in S$.

(4) *interval-valued fuzzy (two-sided) ideal* (in short, *IVI*) of *S* if it is both an interval-valued fuzzy left and an interval-valued fuzzy right ideal of *S*.

We will denote the set or all IVSGs [resp. IVLIs, IVRIs and IVIs] of S as IVSG(S) [resp. IVLI(S), IVRI(S) and IVI(S)].

It is clear that $A \in IVI(S)$ if and only if

$$A^L(xy) > A^L(x) \wedge A^L(y),$$

and

$$A^U(xy) \ge A^U(x) \wedge A^U(y)$$

for any $x,y \in S$, and if $A \in IVLI(S)$ [resp. IVRI(S) and IVI(S)], then $A \in IVSG(S)$.

Remark 3.2. Let S be a semigroup.

(a) If A is a fuzzy subsemigroup of S, then

$$A = [A, A] \in IVSG(S).$$

(b) If $A \in IVSG(S)$ [resp. IVI(S), IVLI(S) and IVRI(S)], then A^L and A^U are fuzzy subsemigroup [resp. ideal, left ideal and right ideal] of S.

Result 3.A. [6, Proposition 3.7] Let A be a non-empty subset of a groupoid S. A is a subgroupoid of S if and only if $[\chi_A, \chi_A] \in \text{IVGP}(S)$.

The following is the immediate result of Definition 3.1 and Result 3.A.

Theorem 3.3. Let A be a non-empty subset of a semigroup S. Then A is a subsemigroup of S if and only if $[\chi_A, \chi_A] \in IVSG(S)$.

Result 3.B. [6, Proposition 6.6] Let R be a ring. Then A is an ideal [resp. a left ideal and a right ideal] of R if and only if $[\chi_A, \chi_A] \in IVI(R)$ [resp. IVLI(R) and IVRI(R)].

The following is the immediate result of Definition 3.1 and Result 3.B.

Theorem 3.4. Let A be a nonempty subset of a semigroup S. Then A is an ideal [resp. a left ideal and a right ideal] of S if and only if $[\chi_A, \chi_A] \in IVI(S)$ [resp. IVLI(S) and IVRI(S)].

Proposition 3.5. Let S be a semigroup. If $A \in IVSG(S)$ [resp. IVI(S), IVLI(S) and IVRI(S)], then $A^{[\lambda,\mu]}$ is a subsemigroup [resp. ideal, left ideal and right ideal] of S.

The following result is the converse of Proposition 3.5:

Proposition 3.6. Let S be a semigroup and let $A \in D(I)^S$. If $A^{[\lambda,\mu]}$ is a subsemigroup [resp. ideal, left ideal and right ideal] of S for each $[\lambda,\mu] \in D(I)$, then $A \in IVSG(S)$ [resp. IVI(S), IVLI(S) and IVRI(S)].

Proof. Suppose $A^{[\lambda,\mu]}$ is a subsemigroup of S for each $[\lambda,\mu]\in D(I)$. For any $x,y\in S$, let $A(x)=[\lambda_1,\mu_1]$ and let $A(y)=[\lambda_2,\mu_2]$. Then $A^L(x)=\lambda_1\geq \lambda_1\wedge \lambda_2$, $A^U(x)=\mu_1\geq \mu_1\wedge \mu_2$ and $A^L(y)=\lambda_2\geq \lambda_1\wedge \lambda_2$, $A^U(y)=\mu_2\geq \mu_1\wedge \mu_2$. Thus $x,y\in A^{[\lambda_1\wedge\lambda_2,\mu_1\wedge\mu_2]}$. Since $[\lambda_1\wedge\lambda_2,\mu_1\wedge\mu_2]\in D(I)$, by the hypothesis, $xy\in A^{[\lambda_1\wedge\lambda_2,\mu_1\wedge\mu_2]}$. Then $A^L(xy)\geq \lambda_1\wedge \lambda_2=A^L(x)\wedge A^L(y)$ and $A^U(xy)\geq \mu_1\wedge \mu_2\geq A^U(x)\wedge A^U(y)$. Hence $A\in \text{IVSG}(S)$.

Now suppose $A^{[\lambda,\mu]}$ is a left ideal of S for each $[\lambda,\mu] \in D(I)$. For each $y \in S$, let $A(y) = [\lambda,\mu]$. Then clearly $y \in A^{[\lambda,\mu]}$. Let $x \in S$. Then, by the hypothesis, $xy \in A^{[\lambda,\mu]}$. Thus $A^L(xy) \geq \lambda = A^L(y)$ and $A^U(xy) \geq \mu = A^U(y)$. Hence $A \in \text{IVLI}(S)$.

Also, we easily see the rest. This completes the proof. $\hfill\Box$

A subsemigroup A of a semigroup S is called a *bi-ideal* of S if $ASA \subset A$. We will denote the set of all bi-ideals of S as BI(S).

Definition 3.7. Let S be a semigroup and let $A \in IVSG(S)$. Then A is called an *interval-valued fuzzy biideal* (in short, IVBI) of S if

$$A^L(xyz) \ge A^L(x) \wedge A^L(z),$$

and

$$A^{U}(xyz) \ge A^{U}(x) \wedge A^{U}(z)$$

for any $x, y, z \in S$.

We will denote the set of all IVBIs of S as IVBI(S). The following result shows that the concept of an IVBI in a semigroup is an extended one of a bi-ideal.

Theorem 3.8. Let A be a non-empty subset of a semigroup S. Then A is a bi-ideal of S if and only if $[\chi_A, \chi_A] \in IVBI(S)$.

Proof. (\Rightarrow): Suppose $A \in BI(S)$ and let $x, y, z \in S$.

Case (i): Suppose $x \in A$ and $z \in A$. Then $\chi_A(x) = \chi_A(z) = 1$. Since A is a bi-ideal of S, $xyz \in ASA \subset A$. Thus $\chi_A(xyz) = 1 = \chi_A(x) \wedge \chi_A(z)$.

Case (ii): Suppose $x \notin A$ or $z \notin A$. Then $\chi_A(x) = 0$ or $\chi_A(z) = 0$. Thus $\chi_A(xyz) \geq 0 = \chi_A(x) \wedge \chi_A(z)$. So, in either cases, $\chi_A(xyz) \geq \chi_A(x) \wedge \chi_A(z)$. Moreover, by Theorem 3.2, $[\chi_A, \chi_A] \in \text{IVSG}(S)$. Hence $[\chi_A, \chi_A] \in \text{IVBI}(S)$.

(\Leftarrow): Suppose $[\chi_A, \chi_A] \in \text{IVBI}(S)$. Let $t \in ASA$. Then there exist $x, z \in A$ and $y \in S$ such that

t=xyz. Since $x,z\in A,$ $\chi_A(x)=\chi_A(z)=1.$ Since $[\chi_A,\chi_A]\in \mathrm{IVBI}(S),$ $\chi_A(xyz)\geq \chi_A(x)\wedge \chi_A(z)=1.$ Then $\chi_A(xyz)=1.$ Thus $t=xyz\in A.$ So $ASA\subset A.$ Moreover, by Theorem 3.3, A is a subsemigroup of S. Hence $A\in \mathrm{BI}(S).$

Theorem 3.9. Let S be a semigroup. Then S is a group if and only if every IVBI of S is a constant mapping.

Proof. (\Rightarrow): Suppose S is a group with the identity e. Let $A \in \text{IVBI}(S)$, and let $a \in S$. Then

$$\begin{split} A^L(a) &= A^L(eae) \geq A^L(e) \wedge A^L(e) = A^L(e) \\ &= A^L(ee) = A^L((aa^{-1})(a^{-1}a)) \\ &= A^L(a(a^{-1}a^{-1})a) \geq A^L(a) \wedge A^L(a) \\ &== A^L(a). \end{split}$$

By the similar arguments, we have that $A^U(a) \ge A^U(a)$. Thus A(a) = A(e). Hence A is a constant mapping.

(\Leftarrow): Suppose the necessary condition holds. Assume that S is not a group. Then it follows from p.84 in [2] that S contains a proper bi-ideal A of S. Then there exists an $x \in S$ such that $x \notin A$. Let $y \in A$ with $y \neq x$. Since A is a bi-ideal of S, by Theorem 3.8, $[\chi_A, \chi_A] \in IVBI(S)$. By the hypothesis, $[\chi_A, \chi_A]$ is a constant mapping. Thus $[\chi_A, \chi_A](x) = [\chi_A, \chi_A](y)$, i.e., $\chi_A(x) = \chi_A(y)$. Since $x \notin A$ and $y \in A$, $\chi_A(x) = 0 < \chi_A(y) = 1$, i.e., $[\chi_A, \chi_A](x) = [0, 0] \neq [1, 1] = [\chi_A, \chi_A](y)$. This is a contradiction. Hence S is a group. This completes the proof.

Proposition 3.10. Every IVLI[resp. IVRI and IVI] of S is an IVBI of S.

Proof. Suppose $A \in \text{IVLI}(S)$, and let $x,y,z \in S$. Then $A^L(xyz) = A^L((xy)z) \geq A^L(z) \geq A^L(x) \wedge A^L(z)$ and $A^U(xyz) = A^U((xy)z) \geq A^U(z) \geq A^U(x) \wedge A^U(z)$. So $A \in \text{IVBI}(S)$. Similarly, we can see that the other cases hold.

Theorem 3.11. Let S be a semigroup and let $A \in D(I)^S$. Then $A \in IVBI(S)$ if and only if $A^{[\lambda,\mu]} \in BI(S)$ for each $[\lambda,\mu] \in D(I)$.

Proof. (\Rightarrow): Suppose $A \in IVBI(S)$, and let $[\lambda, \mu] \in D(I)$. Since $A \in IVSGS$, by Proposition 3.5, $A^{[\lambda, \mu]}$ is a subsemigroup of S. Let $t \in A^{[\lambda, \mu]}SA^{[\lambda, \mu]}$. Then there exist $x, z \in A^{[\lambda, \mu]}$ and $y \in S$ such that t = xyz. Since $A \in IVBI(S)$, we have

$$A^L(t) \ge A^L(x) \wedge A^L(z) \ge \lambda,$$

and

$$A^{U}(t) \ge A^{U}(x) \wedge A^{U}(y) \ge \mu.$$

Thus $t\in A^{[\lambda,\mu]}$. So $A^{[\lambda,\mu]}SA^{[\lambda,\mu]}\subset A^{[\lambda,\mu]}$. Hence $A^{[\lambda,\mu]}\in \mathrm{BI}(S)$.

 (\Leftarrow) : Suppose the necessary condition holds. Since $A^{[\lambda, \, \mu]}$ is a subsemigroup of S, by Proposition 3.6, $A \in IVSG(S)$. For any $x,z \in S$, let $A(x) = [\lambda_1, \mu_1]$ and let $A(z) = [\lambda_2, \mu_2]$. Then, by the process of the proof of Proposition 3.6, $x,z \in A^{[\lambda_1 \wedge \lambda_2, \, \mu_1 \wedge \mu_2]}$. Let $y \in S$. Then, by the hypothesis, $xuz \in A^{[\lambda_1 \wedge \lambda_2, \, \mu_1 \wedge \mu_2]}$. Thus

$$A^{L}(xyz) \ge \lambda_1 \wedge \lambda_2 = A^{L}(x) \wedge A^{L}(z),$$

and

$$A^U(xyz) \ge \mu_1 \wedge \mu_2 \le A^U(x) \wedge A^U(z).$$

Hence $A \in IVBI(S)$. This completes the proof.

4. Interval-valued fuzzy duos, ideals and bi-ideals of a regular semigroup

A semigroup S is said to be *regular* of for each $a \in S$ there exists an $x \in S$ such that a = axa.

A semigroup S is said to be *left duo*[resp. *right duo*] if every left [resp. right] ideal of S is a two-sided ideal of S.

A semigroup S is said to be \emph{duo} if it is both left and right duo.

Definition 4.1. A semigroup S is said to be :

- (1) interval-valued fuzzy left duo(in short, IVLD) if every IVLI of S is an IVI of S.
- (2) *interval-valued fuzzy right duo*(in short, *IVRD*) if every IVRI of *S* is an IVI of *S*.
- (3) *interval-valued fuzzy duo*(in short, *IVD*) if it is both interval-valued fuzzy left and interval-valued fuzzy right duo.

Theorem 4.2. Let S be a regular semigroup. Then S is left duo if and only if S is IVLD.

Proof. (\Rightarrow): Suppose S is left duo. Let $A \in IVLI(S)$ and let $a,b \in S$. Then, by the process of the proof of Theorem 3.1 in [8], $ab \in (aSa)b \subset (Sa)S \subset Sa$. Thus there exists an $x \in S$ such that ab = xa. Since $A \in IVLI(S)$,

$$A^L(ab) = A^L(xa) \ge A^L(a),$$

and

$$A^{U}(ab) = A^{U}(xa) \ge A^{U}(a).$$

Then $A \in IVRI(S)$. Thus $A \in IVI(S)$. Hence S is IVLD. (\Leftarrow) : Suppose S is IVLD, and let A be any left ideal of S. Then, by Theorem 3.4, $[\chi_A, \chi_A] \in IVLI(S)$. By the assumption, $[\chi_A, \chi_A] \in IVI(S)$. Since $A \neq \emptyset$, by Theorem 3.4, A is an ideal of S. Hence S is left duo. This

completes the proof.

Theorem 4.2.' [The dual of Theorem 4.2] Let S be a regular semigroup. Then S is right duo if and only if S is IVRD.

The following is the immediate result of Theorem 4.2 and 4.2'.

Theorem 4.3. Let S be a regular semigroup. Then S is duo if and only if S is IVD.

Theorem 4.4. Let S be a regular semigroup. Then every bi-ideal of S is a right ideal of S if and only if every IVBI of S is an IVRI of S.

Proof. (\Rightarrow): Suppose every bi-ideal of S is a right ideal of S. Let $A \in \text{IVBI}(S)$ and let $a,b \in S$. Then, by the process of proof of Theorem 3.4 in [8], $ab \in (aSa)S \subset aSa$. Thus there exists an $x \in S$ such that ab = axa. Since $A \in \text{IVBI}(S)$, we have

$$A^{L}(ab) = A^{L}(axa) \ge A^{L}(a) \wedge A^{L}(a) = A^{L}(a),$$

and

П

$$A^{U}(ab) = A^{U}(axa) \ge A^{U}(a) \land A^{U}(a) = A^{U}(a).$$

Hence $A \in IVRI(S)$.

 (\Leftarrow) : Suppose that every IVBI of S is an IVRI of S, and let A be any bi-ideal of S. Then, by Theorem 3.8, $[\chi_A, \chi_A] \in \text{IVBI}(S)$. By the assumption, $[\chi_A, \chi_A] \in \text{IVRI}(S)$. Since $A \neq \emptyset$, by Theorem 3.4, A is a right ideal of S. This completes the proof.

Result 4.A. [11, Theorem 3] Every bi-ideal of a regular left duo semigroup S is a right ideal of S.

Corollary 4.5. Let S be a regular duo semigroup. Then every IVBI of S is a IVRI of S.

Proof. By Result 4.A, every bi-ideal of S is a right ideal of S. Hence, by Theorem 4.3, it follows that every IVBI of S is an IVRI of S.

Theorem 4.4.' [The dual of Theorem 4.4] Let S be a regular semigroup. Then every bi-ideal of S is a left ideal of S if and only if every IVBI of S is an IVLI of S.

The following is the immediate result of Theorem 4.4 and 4.4'.

Theorem 4.6. Let S be a regular duo semigroup. Then every bi-ideal of S is an ideal of S if and only if every IVBI of S is an IVI of S.

A semigroup S is called a *semilattice of groups* [2] if it is the set-theoretical union of a set of mutually disjoint subgroups $G_{\alpha}(\alpha \in \Gamma)$, i.e., $S = \bigcup_{\alpha \in \Gamma} G_{\alpha}$ such that for any $\alpha, \beta \in \Gamma$, $G_{\alpha}G_{\beta} \subset G_{\gamma}$ and $G_{\beta}G_{\alpha} \subset G_{\gamma}$ for some $\gamma \in \Gamma$.

Result 4.B. [10, Theorem 4] Every bi-ideal of a semi-group S which is a semilattice of groups, is an ideal of S.

The following is the immediate result of Result 4.B and Theorem 4.6.

Corollary 4.7. Let S be a semigroup which is a semilattice of groups. Then every IVBI of S is an IVI of S.

We denote by L[a] [resp. J[a]] the principle left [resp. two-sided] ideal of a semigroup S generated by a in S, i.e.,

$$L[a] = \{a\} \cup Sa,$$

and

$$J[a] = \{a\} \cup Sa \cup aS \cup SaS.$$

It is well-known [2, Lemma 2.13] that if S is a regular semigroup, then L[a] = Sa for each $a \in S$.

A semigroup S is said to be *right zero*[resp. *left zero*] if xy = y[resp. xy = x] for any $x, y \in S$.

Theorem 4.8. Let S be a regular semigroup and let E_S the set of all idempotent elements of S. Then E_S forms a left zero subsemigroup of S if and only if for each $A \in \text{IVLI}(S)$, A(e) = A(f) for any $e, f \in E_S$, where E_S denotes the set of all idempotent elements of S.

Proof. (\Rightarrow) : Suppose E_S forms a left zero subsemigroup of S. Let $A \in \text{IVLI}(S)$, and let $e, f \in E_S$. Then, by the hypothesis, ef = e and fe = f. Since $A \in \text{IVLI}(S)$, we have

$$A^{L}(e) = A^{L}(ef) > f^{L} = A^{L}(fe) > A^{L}(e),$$

and

$$A^U(e) = A^U(ef) \geq f^U = A^U(fe) \geq A^U(e).$$

Hence A(e) = A(f).

(⇐): Suppose the necessary condition holds. Since S is regular, $E_S \neq \emptyset$. Let $e, f \in E_S$. Then, by Theorem 3.4, $[\chi_{L[f]}, \chi_{L[f]}] \in \text{IVLI}(S)$. Thus $\chi_{L[f]}(e) = \chi_{L[f]}(f) = 1$. So $e \in L[f] = Sf$. Then there exists an $x \in S$ such that e = xf = xff = ef. Hence E_S is a left zero semigroup. This completes the proof.

Corollary 4.9. Let S be an idempotent semigroup. Then S is left zero if and only if for each $A \in IVLI(S)$, A(e) = A(f) for any $e, f \in S$.

Theorem 4.8.' [The dual of Theorem 4.8] Let S be a regular semi group. Then E_S forms a right zero subsemigroup of S if and only if for each $A \in IVRI(S)$, A(e) = A(f) for any $e, f \in E_S$.

Corollary 4.9.' [The dual of Corollary 4.9] Let S be an semigroup. Then S is right zero if and only if for each $A \in IVRI(S)$, A(e) = A(f) for any $e, f \in S$.

Theorem 4.10. Let S be a regular semigroup. Then S is a group if and only if for each $A \in IVBI(S)$, A(e) = A(f) for any $e, f \in E_S$.

Proof. (\Rightarrow): Suppose S is a group. Let $A \in IVBI(S)$. Then, by Theorem 3.8, A is a constant mapping. Hence A(e) = A(f) for any $e, f \in E_S$.

(⇐): Suppose the necessary condition holds. Let $e,f \in E_S$. Let B[x] denote the principal bi-ideal of S generated by x in S, i.e., $B[x] = \{x\} \cup \{x^2\} \cup xSx$ [2, p.84]. Moreover, if S is regular, then B[x] = xSx for each $x \in S$. Then, by Theorem 3.8, $[\chi_{B[f]}, \chi_{B[f]}] \in IVBI(S)$. Since $f \in B[f], \chi_{B[f]}(e) = \chi_{B[f]}(f) = 1$. Then $e \in B[f] = fSf$. Thus, by the process of the proof of Theorem 3.14 in [8], e = f. Since S is regular, $E_S \neq \emptyset$ and S contains exactly one idempotent. So it follows from [2, p.33(Ex. 4)] that S is a group. This completes the proof.

5. Intra-regular semigroups

A semigroup S is said to be *intra-regular* if for each $a \in S$, there exist $x, y \in S$ such that $a = xa^2y$. For characterization of such a semigroup, see [2, Theorem 4.4] and [13, II.4.5 Theorem].

Theorem 5.1. Let S be a semigroup. Then S is intraregular if and only if for each $A \in IVI(S)$, $A(a) = A(a^2)$ for each $a \in S$.

Proof. (\Rightarrow): Suppose S is intra-regular. Let $A \in IVI(S)$, and let $a \in S$. Then, by the hypothesis, there exist $x, y \in S$ such that $a = xa^2y$. Since $A \in IVI(S)$, we have

$$A^{L}(a) = A^{L}(xa^{2}y) \ge A^{L}(xa^{2}) \ge A^{L}(a^{2}) \ge A^{L}(a),$$

and

$$A^{U}(a) = A^{U}(xa^{2}y) \ge A^{U}(xa^{2}) \ge A^{U}(a^{2}) \ge A^{U}(a).$$

Hence $A(a) = A(a^2)$ for each $a \in S$.

 $(\Leftarrow)\colon$ Suppose the necessary condition holds and let $a\in S.$ Then, by Theorem 3.4, $[\chi_{J[a^2]},\chi_{J[a^2]}]\in \mathrm{IVI}(S).$ Since $a^2\in J[a^2],\ \chi_{J[a^2]}(a)=\chi_{J[a^2]}(a^2)=1.$ Thus $a\in J[a^2]=\{a\}\cup Sa^2\cup a^2S\cup Sa^2S.$ So we can easily see that S is intra-regular. This completes the proof. \qed

Proposition 5.2. Let S be an intra-regular semigroup. Then for each $A \in IVI(S)$, A(ab) = A(ba) for any $a, b \in S$.

Proof. Let $A \in IVI(S)$, and let $a, b \in S$. Then, by Theorem 5.1, $A^L(ab) = A^L((ab)^2) = A^L(a(ba)b) \ge A^L(ba) = A^L((ba)^2) = A^L(b(ab)a) \ge A^L(ab)$. By the similar arguments, we have that $A^U(ab) \ge A^U(ab)$. Thus A(ab) = A(ba). This completes the proof.

6. Completely regular semigroups

A semigroup S is said to be *completely regular* if for each $a \in S$, there exists an $x \in S$ such that

$$a = axa$$
 and $ax = xa$.

A semigroup S is said to be *left regular*[resp. *right regular*] if for each $a \in S$, there exists an $x \in S$ such that

$$a = xa^{2}$$
 [resp. $a = a^{2}x$].

For characterizations of such a semigroup, see [2, Theorem 4.2.]. It is well-known[2, Theorem 4.3.] that S is completely regular if and only if it is left and right regular.

Result 6.A. [13, p. 105] Let S be a semigroup. Then the followings are equivalent:

- (1) S is completely regular.
- (2) S is a union of groups.
- (3) $a \in a^2 S a^2$ for each $a \in S$.

Theorem 6.1. Let S be a semigroup. Then S is left regular if and only if, for each $A \in IVLI(S)$, $A(a) = A(a^2)$ for each $a \in S$.

Proof. (\Rightarrow): Suppose S is left regular. Let $A \in IVLI(S)$, and let $a \in S$. Then, by the hypothesis, there exists an $x \in S$ such that $a = xa^2$. Since $A \in IVLI(S)$, $A^L(a) = A^L(xa^2) \geq A^L(a^2) \geq A^L(a)$ and $A^U(a) = A^U(xa^2) \geq A^U(a^2) \geq A^U(a)$. Hence $A(a) = A(a^2)$, for each $a \in S$.

(\Leftarrow): Suppose the necessary condition holds. Let $a \in S$. Then, by Theorem 3.4, $(\chi_{L[a^2]}, \chi_{L[a^2]^c}) \in IVLI(S)$. Since $a^2 \in L[a^2]$, $(\chi_{L[a^2]}(a) = \chi_{L[a^2]}(a^2) = 1$. Then $a \in L[a^2] = \{a^2\} \cup Sa^2$. Hence S is left regular. This completes the proof.

Theorem 6.1,' [The dual of Theorem 6.1] Let S be a semigroup. Then S is right regular if and only if for each $A \in IVRI(S)$, $A(a) = A(a^2)$ for each $a \in S$.

Now we give another characterization of a completely regular semigroup by interval-valued fuzzy bi-ideals.

Theorem 6.2. Let S be a semigroup. Then the followings are equivalent:

- (1) S is completely regular.
- (2) For each $A \in \text{IVBI}(S)$, $A(a) = A(a^2)$ for each $a \in S$.
- (3) For each $B \in IVLI(S)$ and each $C \in IVRI(S)$, $B(a) = B(a^2)$ and $C(a) = C(a^2)$ for each $a \in S$.

Proof. It is clear that $(1)\Leftrightarrow(3)$ by Theorem 6.1 and 6.1'. Thus it is sufficient to show that $(1)\Leftrightarrow(2)$.

- $(1)\Rightarrow (2)$: Suppose the condition (1) holds. Let $A\in IVBI(S)$, and let $a\in S$. Then, by Result 6.A(3), there exists an $x\in S$ such that $a=a^2xa^2$. Since $A\in IVBI(S)$, $A^L(a)=A^L(a^2xa^2)\geq A^L(a^2)\wedge A^L(a^2)=A^L(a^2)\geq A^L(a)\wedge A^L(a)=A^L(a)$. By the similar arguments, we have that $A^U(a)\geq A^U(a)$. Hence $A(a)=A(a^2)$.
- (2) \Rightarrow (1): Suppose the condition (2) holds. For each $x \in S$, let B[x] denote the principal bi-ideal of S generated by x, i.e., $B[x] = \{x\} \cup \{x^2\} \cup xSx$. Let $a \in S$. Then, by Theorem 3.8, $[\chi_{B[a^2]}, \chi_{B[a^2]}] \in IVBI(S)$. Since $a^2 \in B[a^2], \chi_{B[a^2]}(a) = \chi_{B[a^2]}(a^2) = 1$. Thus $a \in B[a^2] = \{a^2\} \cup \{a^4\} \cup a^2Sa^2$. Hence S is completely regular. This completes the proof.

Result 6.B. [9, Theorem 1] Let S be a semigroup. Then S is a semilattice of groups if and only if BI(S) is a semilattice under the multiplication of subsets.

Theorem 6.3. Let S be a semigroup. Then S is a semi-lattice of groups if and only if for each $A \in IVBI(S)$, $A(a) = A(a^2)$ and A(ab) = A(ba) for any $a, b \in S$.

Proof. (\Rightarrow): Suppose S is a semilattice of groups. Then S is a union of groups. By Result 6.A, S is completely regular. Let $A \in \text{IVBI}(S)$, and let $a \in S$. Then, by Theorem 6.2, $A(a) = A(a^2)$. Now let $a, b \in S$. Then, by the process of the proof of Theorem 6 in [7], there exists an $x \in S$ such that $(ab)^3 = (ba)x(ba)$. Thus $A^L(ab) = A^L((ab)^3) = A^L((ba)x(ba)) \geq A^L(ba) \wedge A^L(ba) = A^L(ba)$. By the similar arguments, we have that $A^U(ab) \geq A^U(ba)$. Similarly, we can see that $A^L(ba) \geq A^L(ab)$ and $A^U(ba) \geq A^U(ab)$. So A(ab) = A(ba). Hence the necessary conditions hold.

(\Leftarrow): Suppose the necessary conditions hold. Then, by the first condition and Theorem 6.2, S is completely regular. Thus it is easily shown that A is idempotent for each $A \in \operatorname{BI}(S)$. Let $A, B \in \operatorname{BI}(S)$, and let $t \in BA$. Then there exist $a \in A$ and $b \in B$ such that t = ab. Moreover $B[t] = B[ab] \in \operatorname{BI}(S)$. By Theorem 3.8, $[\chi_{B[ab]}, \chi_{B[ab]}] \in \operatorname{IVBI}(S)$. By the hypothesis, $[\chi_{B[ab]}, \chi_{B[ab]}](ab) = [\chi_{B[ab]}, \chi_{B[ab]}](ba)$. Since $ab \in B[ab], \chi_{B[ab]}(ab) = \chi_{B[ab]}(ba) = 1$. Then $ba \in B[ab] = \{ab\} \cup \{abab\} \cup abSab$. It follows from the process of the proof of Theorem 6 in [7] that BA = AB.

So $(BI(S), \cdot)$ is a commutative idempotent semigroup. Hence, by Result 6.B, S is a semilattice of groups. This completes the proof.

Corollary 6.4. Let S be an idempotent semigroup. Then S is commutative if and only if for each $A \in IVBI(S)$, A(ab) = A(ba) for any $a, b \in S$.

7. Semigroups that are semilattices of left [resp. right] simple semigroups

Result 7.A. [9, Theorem 7 and 18, Theorem] Let S be a semigroup. Then the followings are equivalent:

- (1) S is a semilattice of left simple semigroups.
- (2) S is left regular and AB = BA for any two left ideals A and B of S.
- (3) S is left regular and every left ideal of it is an ideal of S.

The following result can be proved in a similar way as in the proof of Theorem 4.2 and 4.2'.

Theorem 7.1. Let S be a left [resp. right] regular semigroup. Then S is left [resp. right] duo if and only if S is IVLD [resp. IVRD].

The characterization of a semigroup that is a semilattice of left simple semigroups can be founded in [13, Theorem II.4.9].

Theorem 7.2. Let S be a semigroup. Then S is a semilattice of left simple semigroups if and only if for each $A \in IVLI(S)$, $A(a) = A(a^2)$ and A(ab) = A(ba) for any $a, b \in S$.

Proof. (\Rightarrow): Suppose S is a semilattice of left simple semigroups. Let $A \in \text{IVLI}(S)$, and let $a,b \in S$. Then, by Result 7.A, S is left regular. By Theorem 6.1, $A(a) = A(a^2)$. By the hypothesis and Result 6.A, S is left duo. By Theorem 7.1, S is IVLD. Then $A \in \text{IVI}(S)$. Thus $A^L(ab) = A^L((ab^2)) = A^L(a(ba)b) \geq A^L(ba)$ and $A^U(ab) = A^U((ab^2)) = A^U(a(ba)b) \geq A^U(ba)$. By the similar arguments, we have $A^L(ba) \geq A^L(ab)$ and $A^U(ba) \geq A^U(ab)$. Hence A(ab) = A(ba) for any $a,b \in S$.

 $(\Leftarrow) \text{: Suppose the necessary conditions hold. Then,} \\ \text{by the first condition and Theorem 7.1, } S \text{ is left regular.} \\ \text{Let } A \text{ and } B \text{ be any left ideals of } S \text{ and let } x \in AB. \\ \text{Then there exist } a \in A \text{ and } b \in B \text{ such that } x = ab. \\ \text{By Theorem 3.4, } [\chi_{L[ba]}, \chi_{L[ba]}] \in \text{IVLI}(S). \\ \text{Since } ba \in L[ba], \ \chi_{L[ba]}(ab) = \chi_{L[ba]}(ba) = 1. \\ \text{Thus } ab \in L[ba] = \{ba\} \cup Sba \subset BA \cup SBA \subset BA. \\ \text{So} \\$

,by the process of the proof of Theorem 6.3 in [8], we have AB = BA. Hence, by Result 6.A, S is a semilattice of left simple semigroups. This completes the proof. \square

Theorem 7.2.' [The dual of Theorem 7.2] Let S be a semigroup. Then the S is a semilattice of right simple semigroups if and only if for each $A \in IVRI(S)$, $A(a) = A(a^2)$ and A(ab) = A(b) for any $a, b \in S$.

8. Left [resp. right] simple semigroups

Definition 8.1. A semigroup S is said to be *interval-valued* fuzzy left simple[resp. interval-valued fuzzy right simple] if every IVLI [resp. IVRI] of S is a constant mapping and is said to be interval-valued fuzzy simple if every IVI of S is a constant mapping.

Theorem 8.2. Let S be a semigroup. Then S is left simple if and only if S is interval-valued fuzzy left simple.

Proof. (\Rightarrow): Suppose S is left simple. Let $A \in IVLI(S)$, and let $a,b \in S$. Since S is left simple, from [2, p.6], there exist $x,y \in S$ such that b=xa and a=yb. Since $A \in IVLI(S)$, $A^L(a) = A^L(yb) \geq A^L(b) = A^L(xa) \geq A^L(a)$ and $A^U(a) = A^U(yb) \geq A^U(b) = A^U(xa) \geq A^U(a)$. Thus A(a) = A(b). So A is a constant mapping. Hence S is interval-valued fuzzy left simple.

 (\Leftarrow) : Suppose the necessary condition holds. Let A be any left ideal of S. By Theorem 3.4, $[\chi_A, \chi_A] \in IVLI(S)$. By the hypothesis, $[\chi_A, \chi_A]$ is a constant mapping. Since $A \neq \emptyset$, $[\chi_A, \chi_A] = \widetilde{\mathbf{1}}$. Then $\chi_A(a) = 1$ for each $a \in S$. Thus $a \in A$ for each $a \in S$, i.e., $S \subset A$. Hence S is left simple. This completes the proof.

The following two results can be seen in a similar way as in the proof of Theorem 8.2.

Theorem 8.2.' [The dual of Theorem 8.2] Let S be a semigroups. Then S is right simple if and only if S is interval-valued fuzzy simple.

Theorem 8.3. Let S be a semigroup. Then S is simple if and only if S is interval-valued fuzzy simple.

It is well-known that a semigroup S is a group if and only if it is left and right simple. Thus from this and Theorem 8.2 and 8.2′, we obtain the following result:

Theorem 8.4. Let S be a semigroup. Then S is a group if and only if S is both interval-valued fuzzy left and interval-valued fuzzy right simple.

Proposition 8.5. Let S be a left simple semigroup. Then every IVBI of S is an IVRI of S.

Proof. Let $A \in \text{IVBI}(S)$, and let $a, b \in S$. Since S is left simple, there exists an $x \in S$ such that b = xa. Since $A \in \text{IVBI}(S)$, $A^L(ab) = A^L(axa) \geq A^L(a) \wedge A^L(a) = A^L(a)$ and $A^U(ab) = A^U(axa) \geq A^U(a) \wedge A^U(a) = A^U(a)$. Hence $A \in \text{IVRI}(S)$. This completes the proof. \square

Corollary 8.6. Let S be a left simple semigroup. Then every bi-ideal of S is a right ideal of S.

References

- [1] R. Biswas, "Rosenfeld's fuzzy subgroups with interval-valued membership functions," *Fuzzy set and systems*, vol 63, pp. 87-90, 1995.
- [2] A. H. Clifford, and G. B. Preston, "The Algebraic theory of semigroups, Vol.1, Math. Surveys No. 7," *Amer. Soc. Providence*, R.I., 1961.
- [3] J. Y. Choi, S. R. Kim, and K. Hur, "Interval-valued smooth topological spaces," *Honam Math.J.*, vol 32(4), pp. 711-738, 2010.
- [4] M. B. Gorzalczany, "A method of inference in approximate reasoning based on interval-values fuzzy sets," *Fuzzy sets and Systems*, vol 21, pp. 1-17, 1987.
- [5] K. Hur, J. G. Lee, and J. Y. Choi, "Interval-valued fuzzy relations," em J.Korean Institute of Intelligent systems, vol 19(3), pp. 425-432, 2009.
- [6] H. W. Kang, and K. Hur, "Interval-valued fuzzy subgroups and rings," *Honam. Math. J.*, vol 32(4), pp. 593-617, 2010.
- [7] N. Kuroki, "Fuzzy bi-ideals in semigroups," *Comment. Math. Univ. St. Pauli XXVIII-1*, pp. 17-21, 1979.

- [8] ______, "On fuzzy ideals and fuzzy bi-ideals in semigroups," Fuzzy Sets and Systems, vol 5, pp. 203-215, 1981.
- [9] S. Lajos, "A note on semilattice of groups," *Acta Sei. Math. Szeged*, vol 33, pp. 315-317, 1972.
- [10] _____, "On (m, n)-ideals in regular duo semigroups," *Acta Sei. Math. Szeged*, vol 28, pp. 261-265., 1967.
- [11] _____, "Theorems on (1,1)-ideals in semigroups I-II," *K. Marx Univ. Economics Dept. Math.*, Budapest, 1972.
- [12] T. K. Mondal, and S. K. Samanta, "Topology of interval-valued fuzzy sets," *Indian J.Pure Appl.Math.*, vol 30(1), pp. 20-38, 1999.
- [13] M. Petrich, "Introduction to Semigroups," *Columbus*, Ohio, 1973.
- [14] L. A. Zadeh, "Fuzzy sets," *Inform. and Control*, vol 8, pp. 338-353, 1965.
- [15] ______, "The concept of a linguistic variable and its application to approximate reasoning I," *Inform. Sci*, vol 8, pp. 199-249, 1975.

Minseok Cheong

Lecturer of Sogang University Research Area: Poset theory, Graph theory, Cryptography, etc.

E-mail: macross@sogang.ac.kr

Kul Hur the Corresponding Author Professor of Wonkwang University Research Area: Fuzzy topology, Fuzzy algebra, Category, Lattice theory.

E-mail: kulhur@wonkwang.ac.kr