DOI QR코드

DOI QR Code

Interval-valued Fuzzy Ideals and Bi-ideals of a Semigroup

  • Cheong, Min-Seok (Department of Mathematices, Sogang University) ;
  • Hur, Kul (Division of Mathematics and Informational Statistics and Nanoscale Science and Technology Institute, Wonkwang University)
  • Received : 2011.09.27
  • Accepted : 2011.12.03
  • Published : 2011.12.25

Abstract

We apply the concept of interval-valued fuzzy sets to theory of semigroups. We give some properties of interval-valued fuzzy ideals and interval-valued fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and a semilattice of left [right] simple semigroups or another type of semigroups in terms of interval-valued fuzzy ideals and intervalvalued fuzzy bi-ideals.

Keywords

References

  1. R. Biswas, "Rosenfeld's fuzzy subgroups with interval-valued membership functions," Fuzzy set and systems, vol 63, pp. 87-90, 1995. https://doi.org/10.1016/0165-0114(94)90148-1
  2. A. H. Clifford, and G. B. Preston, "The Algebraic theory of semigroups, Vol.1, Math. Surveys No. 7," Amer. Soc. Providence, R.I., 1961.
  3. J. Y. Choi, S. R. Kim, and K. Hur, "Interval-valued smooth topological spaces," HonamMath.J., vol 32(4), pp. 711-738, 2010. https://doi.org/10.5831/HMJ.2010.32.4.711
  4. M. B. Gorzalczany, "A method of inference in approximate reasoning based on interval-values fuzzy sets," Fuzzy sets and Systems, vol 21, pp. 1-17, 1987. https://doi.org/10.1016/0165-0114(87)90148-5
  5. K. Hur, J. G. Lee, and J. Y. Choi, "Interval-valued fuzzy relations," em J.Korean Institute of Intelligent systems, vol 19(3), pp. 425-432, 2009. https://doi.org/10.5391/JKIIS.2009.19.3.425
  6. H. W. Kang, and K. Hur, "Interval-valued fuzzy subgroups and rings," Honam.Math. J., vol 32(4), pp. 593-617, 2010. https://doi.org/10.5831/HMJ.2010.32.4.593
  7. N. Kuroki, "Fuzzy bi-ideals in semigroups," Comment. Math. Univ. St. Pauli XXVIII-1, pp. 17-21, 1979.
  8. N. Kuroki, "On fuzzy ideals and fuzzy bi-ideals in semigroups," Fuzzy Sets and Systems, vol 5, pp. 203-215, 1981. https://doi.org/10.1016/0165-0114(81)90018-X
  9. S. Lajos, "A note on semilattice of groups," Acta Sei. Math. Szeged, vol 33, pp. 315-317, 1972.
  10. S. Lajos, "On (m, n)-ideals in regular duo semigroups," Acta Sei. Math. Szeged, vol 28, pp. 261-265., 1967.
  11. S. Lajos, "Theorems on (1, 1)-ideals in semigroups III," K. Marx Univ. Economics Dept. Math., Budapest, 1972.
  12. T. K. Mondal, and S. K. Samanta, "Topology of interval-valued fuzzy sets," Indian J.Pure Appl.Math., vol 30(1), pp. 20-38, 1999.
  13. M. Petrich, "Introduction to Semigroups," Columbus, Ohio, 1973.
  14. L. A. Zadeh, "Fuzzy sets," Inform. and Control, vol 8, pp. 338-353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
  15. L. A. Zadeh, "The concept of a linguistic variable and its application to approximate reasoning I," Inform. Sci, vol 8, pp. 199-249, 1975. https://doi.org/10.1016/0020-0255(75)90036-5

Cited by

  1. INTERVAL-VALUED FUZZY SUBGROUPS AND LEVEL SUBGROUPS vol.35, pp.3, 2013, https://doi.org/10.5831/HMJ.2013.35.3.525
  2. INTERVAL-VALUED FUZZY SUBGROUPS vol.35, pp.4, 2013, https://doi.org/10.5831/HMJ.2013.35.4.565
  3. Ω-INTERVAL-VALUED FUZZY SUBSEMIGROUPS IN A SEMIGROUP vol.37, pp.1, 2015, https://doi.org/10.5831/HMJ.2015.37.1.29
  4. INTERVAL-VALUED FUZZY GROUP CONGRUENCES vol.38, pp.2, 2016, https://doi.org/10.5831/HMJ.2016.38.2.403