• Title/Summary/Keyword: resonant column

Search Result 136, Processing Time 0.024 seconds

Data Reduction and Analysis Technique for the Resonant Column Testing by Its Theoretical Modeling (공진주 실험의 이론적 모델링에 의한 자료분석 및 해석기법의 제안)

  • 조성호;황선근;강태호;권병성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.291-298
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and the material damping factor of soils. The method has been widely used for many applications and its importance has been increased. Since the establishment of the testing method in 1963, the low-technology electronic devices for testing and data acquisition have limited the measurement to the amplitude of the linear spectrum. The limitations of the testing method were also attributed to the assumption of the linear-elastic material in the theory of the resonant column testing and to the use of the wave equation for the dynamic response of the specimen. For the better theoretical formulation of the resonant column testing, this study derived the equation of motion and provided its solution. This study also proposed the improved data reduction and analysis method for the resonant column testing, based on the advanced data acquisition system and the proposed theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were peformed for Joomunjin sand, which verified the feasibility, of the proposed method and showed the limitations of the conventional data reduction and analysis method.

  • PDF

Data Reduction and Analysis of the Resonant Column Testing Based on the Equation of Motion (운동방정식에 기초한 공진주 실험의 자료분석 및 해석)

  • 조성호;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.133-144
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and material damping factor of soils. The method has been widely used for many applications and its importance has increased. Since the first use of the testing method in 1960's, the low-technology electronic devices fir testing and data acquisition have limited the measurement only to the amplitude of the linear spectrum. The limitations of the testing method are also attributed to the assumption of linear-elastic material in the theory of the resonant column testing and also to the incomplete understanding of the dynamic behaviour of the resonant column testing device. Recently, Joh et al. proposed a theory to overcome the limitations of the resonant column testing by deriving the equation of motion and providing its solution for the resonant column testing device. This study proposed the improved data reduction and analysis method for the resonant column testing, thanks to the advanced data acquisition system and the new theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were performed fir Joomunjin sand, which verified the feasibility of the proposed method and revealed the limitations of the conventional data reduction and analysis method.

Theoretical Modeling of the Resonant Column Testing with the Viscosity of a Specimen Considered (점성을 고려한 공진주 실험의 이론적 모델링)

  • 조성호;황선근;권병성;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.145-153
    • /
    • 2003
  • The resonant column testing determines the shear modulus and material damping factor dependent on the shear strain magnitude, based on the wave-propagation theory. The determination of the dynamic soil properties requires the theoretical formulation of the dynamic behavior of the resonant column testing system. One of the theoretical formulations is the use of the wave equation for the soil specimen in the resonant column testing device. Wood, Richart and Hall derived the wave equation by assuming the linear elastic soil, and didn't take the material damping into consideration. Hardin incorporated the viscoelastic damping of soil in the wave equation, but he had to assume the material damping factor for the determination of the shear modulus. For the better theoretical formulation of the resonant column testing, this study derived a new wave equation to include the viscosity of soil, and proposed an approach for the solution. Also, in this study, the equation of motion for the testing system, which is another approach of the theoretical formulation of the resonant column testing, was also derived. The equation of motion leads to the better understanding of the resonant column testing, which includes the dynamic magnification factor and the phase angle of the response. For the verification of the proposed equation of motion for the resonant column testing, the finite element analysis was performed for the resonant column testing. The comparison of the dynamic magnification factors and the phase angles far the system response were performed.

Verification of the large scale, free-free resonant testing equipment using Jumunjin sand (주문진 표준사를 이용한 대형 공진주 시험 장비의 검증)

  • Park, In-Beom;Park, Chul-Soo;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1415-1424
    • /
    • 2009
  • Measuring dynamic properties of gravel-sized materials demands large specimens. Due to the difficulties in experiment as well as equipment, the dynamic properties of gravel-sized material has rarely been investigated. To realize free-free end condition more properly and stabilize specimen during testing with new specimen support system, a free-free resonant column testing device, which is capable of testing gravel-sized materials and constraining a specimen in free-free boundaries, is developed. We report the calibration of the equipment and preliminary testing results on Jumunjin sand. The testing data are compared with the previous data obtained from the existing fixed-free resonant column test.

  • PDF

Dynamic Deformation Characteristics of Fiber Reinforced Soils Using Resonant Column Tests (공진주 시험을 이용한 섬유보강토의 동적변형특성)

  • Chang, Pyoung-Wuck;Heo, Joon;Park, Young-Kon;Cha, Kyung-Seob;Woo, Chull-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.349-352
    • /
    • 2002
  • In this paper, dynamic properties of fiber reinforced soils were investigated at shearing strains between $10^{-4}%\;and\;10^{-1}%$ using resonant column test. Resonant column test has been widely used as a primary laboratory testing technique in investigating dynamic soil properties expressed in term of shear modulus and material damping. At strains above elastic threshold, the variations of shear modulus(G) and damping ratio(D) were investigated. Based on test results, the small strain shear modulus($G_{max}$) and damping ratio($D_{min}$) were determined and the effects of confinement on $G_{max}$ and $D_{min}$ were characterized.

  • PDF

Frequency-Phase Method to Measure Material Damping in a Nonlinear Range (비선형 영역에서의 재료감쇠비 측정을 위한 주파수-위상각법)

  • 우규석;조성호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.533-540
    • /
    • 2001
  • Material damping is an important parameter to evaluate the site response by a dynamic loading. Currently the material damping of the subgrade is mainly determined by a resonant column testing. Typical methods to evaluate material damping include half-power bandwidth method and free-vibration decay method. In the large strain range, the half-power bandwidth method gives an erratic damping factor, because the method is based on the assumption of the linear behavior of a specimen. The free-vibration decay method has also limitations in that the damping factors vary with the range of cycles in calculation, and also in that the specific shear strain can not be designated for the free vibration. In this study, the frequency-phase method, which was developed to evaluate material damping of a beam simply supported, is introduced to evaluate the material damping by the resonant column testing. Also, the comparison among half-power method, free-vibration decay method and the frequency-phase method is provided for a remolded sand.

  • PDF

A Solution to Large Strain Resonant Column and Torsional Shear Tests Apparatus (대변형율 시험을 위한 공진주/비틂전단 시험기의 해결방안)

  • Bae, Yoon-Shin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3C
    • /
    • pp.103-108
    • /
    • 2011
  • In this study, the limitations of large strain resonant column and torsional shear tests apparatus are described and solutions to the limitations are also described. The limitations are rotational distance, limited torque, and measurable deformation system, respectively. To resolve the rotational distance, the bottom platen was modified. And the four-armed drive plate was modified into eight-armed drive plate and the drive coil connection was changed to obtain powerful torque.

Adoption of the large scale free-free resonant column test (대형 공진주 시험 장비의 적용)

  • Park, In-Beom;Park, Chul-Soo;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.626-633
    • /
    • 2009
  • A large scale resonant column testing equipment is under development. The would-be equipment is aiming to test 150mm-diameter specimens, which can contain as large a grain size as 25mm. Such a large specimen is hardly excitated with the existing fixed-free end condition because the torsional force cannot be effectively coupled to the specimen. The specimen will be rather resonated with free-free condition and the scheme is implemented with a rotational bearing installed between coil-magnet exciter and base pedestal. Presently the equipment was assembled and is under calibration with a cylindrical brass specimen.

  • PDF