• 제목/요약/키워드: reporter gene imaging

검색결과 28건 처리시간 0.029초

핵의학적 리포터 유전자 영상 (Radionuclide Reporter Gene Imaging)

  • 민정준
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.143-151
    • /
    • 2004
  • Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studios published to date demonstrate that reporter gene imaging technologies will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

유전자 발현 영상기법 (Imaging Gene Expression)

  • 이경한
    • 대한핵의학회지
    • /
    • 제34권1호
    • /
    • pp.1-9
    • /
    • 2000
  • The rapid progress of molecular genetic methods over the past two decades has necessitated the development of methods to detect and quantify genetic activity within living bodies. Reporter genes provide a rapid and convenient tool to monitor gene expression by yielding a readily measurable phenotype upon expression when introduced into a biological system. Conventional reporter systems, however, are limited in their usefulness for in vivo experiments or human gene therapy because of its invasive nature which requires cell damage before assays can be performed. This offers an unique opportunity for nuclear imaging techniques to develope a novel method for imaging both the location and amount of gene expression noninvasively. Current developments to achieve this goal rely on utilizing either reporter enzymes that accumulate radiolabeled substrates or reporter receptors that bind specific radioligands. This overview includes a brief introduction to the background for such research, a summary of published results, and an outlook for future directions.

  • PDF

심장핵의학 분자영상학 (Molecular Nuclear Cardiac Imaging)

  • 이동수;팽진철
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.175-179
    • /
    • 2004
  • Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needic injection with or without catheter guidance. Tk expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

In Vivo Reporter Gene Imaging: Recent Progress of PET and Optical Imaging Approaches

  • Min, Jung-Joon
    • Bioinformatics and Biosystems
    • /
    • 제1권1호
    • /
    • pp.17-27
    • /
    • 2006
  • Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of radionuclide, magnetic resonance, and optical imaging technologies as they have been used in imaging gene delivery and gene expression for molecular imaging applications. The studies published to date demonstrate that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

  • PDF

Molecular imaging of atherosclerosis using reporter gene system

  • Yoo, Ran Ji;Lee, Kyochul;Kang, Joo Hyun;Lee, Yong Jin
    • 대한방사성의약품학회지
    • /
    • 제4권1호
    • /
    • pp.26-31
    • /
    • 2018
  • Macrophages play a key role in atherosclerotic plaque formation, but their participation has been discerned largely via ex vivo analyses of atherosclerotic lesions. Therefore, we aimed to identify atherosclerosis on noninvasive in vivo imaging using reporter gene system. This study demonstrated that recruitment of macrophages could be detected in atherosclerotic plaques of Apolipoprotein E knockout (ApoE-/-) mice with a sodium iodide symporter (NIS) gene imaging system using $^{99m}Tc-SPECT$. This novel approach to tracking macrophages to atherosclerotic plaques in vivo could have applications in studies of arteriosclerotic vascular disease.

유전자 치료에서 PET의 역할 (Role of PET in Gene Therapy)

  • 이경한
    • 대한핵의학회지
    • /
    • 제36권1호
    • /
    • pp.74-79
    • /
    • 2002
  • In addition to the well-established use of positron emission tomography (PET) in clinical oncology, novel roles for PET are rapidly emerging in the field of gene therapy. Methods for controlled gene delivery to living bodies, made available through advances in molecular biology, are currently being employed in animals for research purposes and in humans to treat diseases such as cancer. Although gene therapy is still in its early developmental stage, it is perceived that many serious illnesses could be treated successfully by the use of therapeutic gene delivery. A major challenge for the widespread use of human gene therapy is to achieve a controlled and effective delivery of foreign genes to target cells and subsequently, adequate levels of expression. As such, the availability of noninvasive imaging methods to accurately assess the location, duration, and level of transgene expression is critical for optimizing gene therapy strategies. Current endeavors to achieve this goal include methods that utilize magnetic resonance imaging, optical imaging, and nuclear imaging techniques. As for PET, reporter systems that utilize genes encoding enzymes that accumulate positron labeled substrates and those transcribing surface receptors that bind specific positron labeled ligands have been successfully developed. More recent advances in this area include improved reporter gene constructs and radiotracers, introduction of potential strategies to monitor endogenous gene expression, and human pilot studies evaluating the distribution and safety of reporter PET tracers. The remarkably rapid progress occurring in gene imaging technology indicates its importance and wide range of application. As such, gene imaging is likely to become a major and exciting new area for future application of PET technology.

Molecular Imaging in the Age of Genomic Medicine

  • Byun, Jong-Hoe
    • Genomics & Informatics
    • /
    • 제5권2호
    • /
    • pp.46-55
    • /
    • 2007
  • The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.

PET 리포터 유전자를 이용한 이행성 연구 (Translational Imaging with PET Reporter Gene Approaches)

  • 민정준
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권6호
    • /
    • pp.279-292
    • /
    • 2006
  • Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of biomedical research. These tools have been validated recently in variety of research models, and have born shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of PET technologies as they have been used in imaging biological processes for molecular imaging applications. The studies published to date demonstrate that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

나트륨 옥소 공동수송체 유전자와 녹색 형광 유전자의 이중 리포터 유전자를 발현하는 간암세포주 확립 (Establishment of a Hepatocellular Carcinoma Cell Line Expressing Dual Reporter Genes: Sodium Iodide Symporter (NIS) and Enhanced Green Fluorescence Protein (EGFP))

  • 곽원정;구본철;권모선;이용진;이화영;유정수;김태완;전권수;천기정;이상우;안병철;이재태
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권3호
    • /
    • pp.226-233
    • /
    • 2007
  • 목적: 광학과 핵의학 및 자기공명 분자영상 기술은 생체내에서 리포터 유전자의 발현을 비침습적으로 평가할 수 있다. 한가지 이상의 유전자 발현을 영상화 할 수 있는 복합분자영상은 유전자의 발현과 유전자 치료 후 효능의 평가를 다양한 방법으로 반복하여 평가할 수 있다는 장점이 있다. 본 연구에서는 핵의학 영상이 가능한 NIS와 광학 영상이 가능한 EGFP 두가지 유전자를 동시에 발현하는 HepG2-Retro-PNRGW (PGKp-NIS-RSVp-EGFP-WPRE) plasmid를 이용한 간암 세포주(HepG2-NE)를 구축하고, NIS와 EGFP 리포터 유전자의 기능 발현을 체내에서 광학영상과 핵의학 영상으로 확인하고자 하였다. 재료 및 방법: pcDNA-NIS로 부터 NIS 유전자를 분리하여 pRetro-PN vector를 만든 후, pLNRGW (LTR-NeoR-RSV-EGFP-WPRE)로부터 RSV-EGFP-WPRE 조각을 분리하여 최종적으로 NIS와 EGFP 유전자가 동시에 발현할 수 있는 pRetro-PNRGW vector를 구축하였다. 구축된 vector를 이용하여 Retro-PNRGW retrovirus를 생산하였으며, 이를 HepG2 세포에 감염시켜 HepG2-NE 세포주를 만들었다. 이 세포주의 NIS 유전자의 발현은 역전사효소 중합효소 연쇄반응으로 mRNA 발현을 확인하였고, EGFP 유전자의 발현은 형광현미경을 통하여 EGFP 단백질이 발현하는 녹색형광을 관찰함으로써 확인하였다. 이중 리포터 유전자 중 NIS 유전자의 기능은 세포에서 방사능 옥소의 섭취량과 유출량의 측정을 통해서 확인하였다. 이렇게 만들어진 세포를 누드마우스에 이식하여 형광 영상, I-123을 이용한 감마카메라 영상과 I-124를 이용한 소동물용 PET 영상을 획득하였다. 결과: NIS와 EGFP의 이중 리포터 유전자를 가지고 있는 HepG2 세포주가 성공적으로 만들어졌다. 세포의 약 50% 정도가 형광 현미경 아래에서 관찰되었다. NIS 유전자의 발현은 역전사효소 중합효소 연쇄반응 실험을 통해서 확인하였고, NIS가 발현된 세포의 방사능옥소 섭취량은 대조군에 비하여 약 9배 정도 높게 나타났다. 방사능옥소 유출량 실험에서는 약 9분에 반 정도의 옥소가 유출되는 것이 확인되었다. 구축된 세포주를 이식한 후 획득한 형광 영상, 감마카메라과 소동물용 PET 영상에서는 반대쪽의 대조군 세포를 이식한 것에 비하여 뚜렷한 형광신호가 보였고, 더 높은 방사능옥소 섭취가 확인되었다. 결론: NIS와 EGFP의 이중 리포터 유전자를 가지는 간암 세포주가 성공적으로 구축되었고, 소동물에서 두 유전자를 각각 치료용 리포터 유전자와 영상 리포터 유전자로의 사용이 가능할 것이라고 생각된다.

리포터유전자를 이용한 조골세포 분화정도에 관한 연구 (A study on the osteoblast differentiation using osteocalcin gene promoter controlling luciferase expression)

  • 김경화;박윤정;이용무;한중석;이동수;이승진;정종평;설양조
    • Journal of Periodontal and Implant Science
    • /
    • 제36권4호
    • /
    • pp.839-847
    • /
    • 2006
  • The aim of this study is to monitor reporter gene expression under osteocalcin gene promoter, using a real-time molecular imaging system, as tool to investigate osteoblast differentiation. The promoter region of mouse osteocalcin gene 2 (mOG2), the best-characterized osteoblast-specific gene, was inserted in promoterless luciferase reporter vector. Expression of reporter gene was confirmed and relationship between the reporter gene expression and osteoblastic differentiation was evaluated. Gene expression according to osteoblstic differentiation on biomaterials, utilizing a real-time molecular imaging system, was monitored. Luciferase was expressed at the only cells transduced with pGL4/mOGP and the level of expression was statistically higher at cells cultured in mineralization medium than cells in growth medium. CCCD camera detected the luciferase expression and was visible differentiation-dependent intensity of luminescence. The cells produced osteocalcin with time-dependent increment in BMP-2 treated cells and there was difference between BMP-2 treated cells and untreated cells at 14days. There was difference at the level of luciferase expression under pGL4/mOGP between BMP-2 treated cells and untreated cells at 3days. CCCD camera detected the luciferase expression at cells transduced with pGL4/mOGP on Ti disc and was visible differentiation-dependent intensity of luminescence This study shows that 1) expression of luciferase is regulated by the mouse OC promoter, 2) the CCCD detection system is a reliable quantitative gene detection tool for the osteoblast differentiation, 3) the dynamics of mouse OC promoter regulation during osteoblast differentiation is achieved in real time and quantitatively on biomaterial. The present system is a very reliable system for monitoring of osteoblast differentiation in real time and may be used for monitoring the effects of growth factors, drug, cytokines and biomaterials on osteoblast differentiation in animal.