Molecular Imaging in the Age of Genomic Medicine

  • Byun, Jong-Hoe (Department of Molecular Biology, BK21 graduate program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • Published : 2007.06.30

Abstract

The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.

Keywords

References

  1. Bengel, F.M., Anton, M., Richter, T., Simoes, M.V., Haubner, R., Henke, J., Erhardt, W., Reder, S., Lehner, T., Brandau, W., Boekstegers, P., Nekolla, S.G., Gansbacher, B., and Schwaiger, M. (2003). Noninvasive imaging of transgene expression by use of positron emission tomography in a pig model of myocardial gene transfer. Circulation 108, 2127-2133 https://doi.org/10.1161/01.CIR.0000091401.26280.A0
  2. Blasberg, R.G. (2003). In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations. Nucl. Med. Biol. 30, 879-888 https://doi.org/10.1016/S0969-8051(03)00115-X
  3. Blasberg, R.G. and Tjuvajev, J.G. (2002). In vivo molecular-genetic imaging. J. Cell. Biochem. Suppl. 39, 172-183
  4. Blasberg, R.G. and Tjuvajev, J.G. (2003). Molecular-genetic imaging: current and future perspectives. J. Clin. Invest. 111, 1620-1629 https://doi.org/10.1172/JCI18855
  5. Britz-Cunningham, S.H. and Adelstein, S.J. (2003). Molecular targeting with radionuclides: state of the science. J. Nucl. Med. 44, 1945-1961
  6. Chang, G.Y., Cao, F., Krishnan, M., Huang, M., Li, Z., Xie, X., Sheikh, A.Y., Hoyt, G., Robbins, R.C., Hsiai, T., Schneider, M.D., and Wu, J.C. (2007). Positron emission tomography imaging of conditional gene activation in the heart. J. Mol. Cell. Cardiol. [Epub ahead of print] doi:10.1016/j.yjmcc.2007.03.809
  7. Chun, H.J., Wilson, K.O., Huang, M., and Wu, J.C. (2007). Integration of genomics, proteomics, and imaging for cardiac stem cell therapy. Eur. J. Nucl. Med. Mol. Imaging [Epub ahead of print] doi:10.1007/s00259-007-0437-y
  8. Cong, X. and Nilsen-Hamilton, M. (2005). Allosteric aptamers: targeted reversibly attenuated probes. Biochemistry 44, 7945-7954 https://doi.org/10.1021/bi047507x
  9. De Vries, E.F., Vroegh, J., Dijkstra, G., Moshage, H., Elsinga, P.H., Jansen, P.L., and Vaalburg, W. (2004). Synthesis and evaluation of a fluorine-18 labeled antisense oligonucleotide as a potential PET tracer for iNOS mRNA expression. Nucl. Med. Biol. 31, 605-612 https://doi.org/10.1016/j.nucmedbio.2004.02.002
  10. Eyckerman, S., Verhee, A., der Heyden, J.V., Lemmens, I., Ostade, X.V., Vandekerckhove, J., and Tavernier, J. (2001). Design and application of a cytokine-receptorbased interaction trap. Nat. Cell. Biol. 3, 1114-1119 https://doi.org/10.1038/ncb1201-1114
  11. Frost, M.L., Cook, G.J., Blake, G.M., Marsden, .P.K., and Fogelman, I. (2007). The relationship between regional bone turnover measured using 18F-fluoride positron emission tomography and changes in BMD is equivalent to that seen for biochemical markers of bone turnover. J. Clin. Densitom. 10, 46-54 https://doi.org/10.1016/j.jocd.2006.10.006
  12. Gambhir, S.S., Herschman, H.R., Cherry, S.R., Barrio, J.R., Satyamurthy, N., Toyokuni, T., Phelps, M.E., Larson, S.M., Balatoni, J., Finn, R., Sadelain, M., Tjuvajev, J., and Blasberg, R. (2000). Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2, 118-138 https://doi.org/10.1038/sj.neo.7900083
  13. Haberkorn, U. (2001).Gene therapy with sodium/iodide symporter in hepatocarcinoma. Exp. Clin. Endocrinol. Diabetes. 1, 60-62
  14. Inubushi, M., Wu, J.C., Gambhir, S.S., Sundaresan, G., Satyamurthy, N., Namavari, M., Yee, S., Barrio, J.R., Stout, D., Chatziioannou, A.F., Wu, L., and Schelbert, H.R. (2003). Positron-emission tomography reporter gene expression imaging in rat myocardium. Circulation 107, 326-332 https://doi.org/10.1161/01.CIR.0000044385.60972.AE
  15. Jacobs, A., Voges, J., Reszka, R., Lercher, M., Gossmann, A., Kracht, L., Kaestle, C., Wagner, R., Wienhard, K., and Heiss, W.D. (2001). Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358, 727-729 https://doi.org/10.1016/S0140-6736(01)05904-9
  16. Lee, J.Y., Lee, Y.S., Kim, J.M., Kim, K.L., Lee, J.S., Jang, H.S., Shin, I.S., Suh, W., Jeon, E.S., Byun, J., and Kim, D.K. (2006). A novel chimeric promoter that is highly responsive to hypoxia and metals. Gene Ther. 13, 857-868 https://doi.org/10.1038/sj.gt.3302728
  17. Luker, G.D., Sharma, V., Pica, C.M., Dahlheimer, J.L., Li, W., Ochesky, J., Ryan, C.E., Piwnica-Worms, H., and Piwnica-Worms, D. (2002). Noninvasive imaging of protein-protein interactions in living animals. Proc. Natl. Acad. Sci. U S A 99, 6961-6966
  18. Massoud, T.F. and Gambhir, S.S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545-580 https://doi.org/10.1101/gad.1047403
  19. Massoud, T.F. and Gambhir, S.S. (2007). Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends. Mol. Med. 13, 183-191 https://doi.org/10.1016/j.molmed.2007.03.003
  20. Mintun, M.A., Welch, M.J., Siegel, B.A., Mathias, C.J., Brodack, J.W., McGuire, A.H., and Katzenellenbogen, J.A. (1988). Breast cancer: PET imaging of estrogen receptors. Radiology 169, 45-48 https://doi.org/10.1148/radiology.169.1.3262228
  21. Miyagawa, T., Oku, T., Uehara, H., Desai, R., Beattie, B., Tjuvajev, J., and Blasberg, R. (1998). 'Facilitated' amino acid transport is up-regulated in brain tumors. J. Cereb. Blood Flow Metab. 18, 500-509 https://doi.org/10.1097/00004647-199805000-00005
  22. Parrish, J.R., Gulyas, K.D., and Finley, R.L. (2006). Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotechnol. 17, 387-393 https://doi.org/10.1016/j.copbio.2006.06.006
  23. Penuelas, I., Mazzolini, G., Boan, J.F., Sangro, B., Marti-Climent, J., Ruiz, M., Ruiz, J., Satyamurthy, N., Qian, C., Barrio, J.R., Phelps, M.E., Richter, J.A., Gambhir, S.S., and Prieto, J. (2005). Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128, 1787-1795 https://doi.org/10.1053/j.gastro.2005.03.024
  24. Ponomarev, V., Doubrovin, M., Shavrin, A., Serganova, I., Beresten, T., Ageyeva, L., Cai, C., Balatoni, J., Alauddin, M., and Gelovani, J. (2007). A Human-Derived Reporter Gene for Noninvasive Imaging in Humans: Mitochondrial Thymidine Kinase Type 2. J. Nucl. Med. 48, 819-826 https://doi.org/10.2967/jnumed.106.036962
  25. Ray, P., Pimenta, H., Paulmurugan, R., Berger, F., Phelps, M.E., Iyer, M., and Gambhir, S.S. (2002). Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc. Natl. Acad. Sci. U S A 99, 3105-3110 https://doi.org/10.1073/pnas.052710999
  26. Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, T., Casella, V., Fowler, J., Gallagher, B., Hoffman, E., Alavi, A., and Sokoloff, L. (1977). Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro- 2-deoxy- d-glucose. Acta. Neurol. Scand. Suppl. 64, 190-191
  27. Remy, I. and Michnick, S.W. (2007). Application of protein-fragment complementation assays in cell biology. Biotechniques 42, 137-141 https://doi.org/10.2144/000112396
  28. Rossi, F., Charlton, C.A., and Blau, H.M. (1997). Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc. Natl. Acad. Sci. U S A 94, 8405-8410
  29. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., and Shinohara, M. (1977). The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897-916 https://doi.org/10.1111/j.1471-4159.1977.tb10649.x
  30. Stagljar, I., Korostensky, C., Johnsson, N., and te Heesen, S. (1998). A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Sci. U S A 95, 5187-5192
  31. Tavitian, B., Terrazzino, S., Kuhnast, B., Marzabal, S., Stettler, O., Dolle, F., Deverre, J.R., Jobert, A., Hinnen, F., Bendriem, B., Crouzel, C., and Di Giamberardino, L. (1998). In vivo imaging of oligonucleotides with positron emission tomography. Nat. Med. 4, 467-471 https://doi.org/10.1038/nm0498-467
  32. Tjuvajev, J.G., Doubrovin, M., Akhurst, T., Cai, S., Balatoni, J., Alauddin, M.M., Finn, R., Bornmann, W., Thaler, H., Conti, P.S., and Blasberg, R.G. (2002). Comparison of radiolabelled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J. Nucl. Med. 43, 1072-1083
  33. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., and Bork, P. (2002). Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399-403 https://doi.org/10.1038/nature750