Translational Imaging with PET Reporter Gene Approaches

PET 리포터 유전자를 이용한 이행성 연구

  • Min, Jung-Joon (Department of Nuclear Medicine, Chonnam National University Medical School)
  • 민정준 (전남대학교 의과대학 핵의학교실)
  • Published : 2006.12.31

Abstract

Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of biomedical research. These tools have been validated recently in variety of research models, and have born shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of PET technologies as they have been used in imaging biological processes for molecular imaging applications. The studies published to date demonstrate that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

Keywords

References

  1. Massoud TF and Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545-80 https://doi.org/10.1101/gad.1047403
  2. Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2000;2:118-38 https://doi.org/10.1038/sj.neo.7900083
  3. Phelps ME. Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 2000;97:9226-33 https://doi.org/10.1073/pnas.97.16.9226
  4. Lewin B. Genes VII. 2000
  5. Hoffman RM. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 2005;5:796-806 https://doi.org/10.1038/nrc1717
  6. Contag CH and Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002;4:235-60 https://doi.org/10.1146/annurev.bioeng.4.111901.093336
  7. Gambhir SS and Massoud TF. Molecular imaging fundamentals. In: P. J. Ell and S. Gambhir (eds.), Nuclear Medicine in Clinical Diagnosis and Treatment, Vol. 2, pp. 1845-1870. London: Elsevier, 2004
  8. Serganova I and Blasberg R. Reporter gene imaging: potential impact on therapy. Nucl Med Biol 2005;32:763-80 https://doi.org/10.1016/j.nucmedbio.2005.05.008
  9. Haberkorn U, Oberdorfer F, Gebert J, Morr I, Haack K, Weber K, et al. Monitoring gene therapy with cytosine deaminase: in vitro studies using tritiated-5-fluorocytosine. J Nucl Med 1996;37:87-94
  10. Haberkorn U and Altmann A. Imaging methods in gene therapy of cancer. Curr Gene Ther 2001;1:163-82 https://doi.org/10.2174/1566523013348760
  11. Herschman HR, MacLaren DC, Iyer M, Namavari M, Bobinski K, Green LA, et al. Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography. J Neurosci Res 2000;59: 699-705 https://doi.org/10.1002/(SICI)1097-4547(20000315)59:6<699::AID-JNR1>3.0.CO;2-1
  12. Zinn KR and Chaudhuri TR. The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur J Nucl Med Mol Imaging 2002;29:388-99 https://doi.org/10.1007/s00259-002-0764-y
  13. Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43:1188-200
  14. Dingli D, Russell SJ, and Morris JC 3rd. In vivo imaging and tumor therapy with the sodium iodide symporter. J Cell Biochem 2003;90:1079-86 https://doi.org/10.1002/jcb.10714
  15. Weissleder R and Mahmood U. Molecular imaging. Radiology 2001;219:316-33 https://doi.org/10.1148/radiology.219.2.r01ma19316
  16. Tjuvajev JG, Avril N, Oku T, Sasajima T, Miyagawa T, Joshi R, et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 1998;58: 4333-41
  17. Tjuvajev JG, Chen SH, Joshi A, Joshi R, Guo ZS, Balatoni J, et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res 1999;59:5186-93
  18. Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002;43:1072-83
  19. Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 1996;56:4087-95
  20. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:6126-32
  21. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci U S A 1999;96:2333-8 https://doi.org/10.1073/pnas.96.5.2333
  22. Gambhir SS, Barrio JR, Wu L, Iyer M, Namavari M, Satyamurthy N, et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998;39:2003-11
  23. Gambhir SS, Bauer E, Black ME, Liang Q, Kokoris MS, Barrio JR, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 2000;97:2785-90 https://doi.org/10.1073/pnas.97.6.2785
  24. Iyer M, Barrio JR, Namavari M, Bauer E, Satyamurthy N, Nguyen K, et al. 8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med 2001;42:96-105
  25. Kang KW, Min JJ, Chen X, and Gambhir SS. Comparison of [(14)C]FMAU, [(3)H]FEAU, [(14)C]FIAU, and [(3)H]PCV for Monitoring Reporter Gene Expression of Wild Type and Mutant Herpes Simplex Virus Type 1 Thymidine Kinase in Cell Culture. Mol Imaging Biol 2005;7:296-303 https://doi.org/10.1007/s11307-005-0010-7
  26. Min JJ, Iyer M, and Gambhir SS. Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection. Eur J Nucl Med Mol Imaging 2003;30:1547-60 https://doi.org/10.1007/s00259-003-1238-6
  27. MacLaren DC, Gambhir SS, Satyamurthy N, Barrio JR, Sharfstein S, Toyokuni T, et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 1999;6:785-91 https://doi.org/10.1038/sj.gt.3300877
  28. Barrio JR, Satyamurthy N, Huang SC, Keen RE, Nissenson CH, Hoffman JM, et al. 3-(2'-[18F]fluoroethyl)spiperone: in vivo biochemical and kinetic characterization in rodents, nonhuman primates, and humans. J Cereb Blood Flow Metab 1989;9:830-9 https://doi.org/10.1038/jcbfm.1989.117
  29. van Eijck CH, de Jong M, Breeman WA, Slooter GD, Marquet RL, and Krenning EP. Somatostatin receptor imaging and therapy of pancreatic endocrine tumors. Ann Oncol 1999;10 Suppl 4:177-81
  30. Rogers BE, McLean SF, Kirkman RL, Della Manna D, Bright SJ, Olsen CC, et al. In vivo localization of [(111)In]-DTPA-D-Phe1- octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector. Clin Cancer Res 1999;5:383-393
  31. Rogers BE, Zinn KR, and Buchsbaum DJ. Gene transfer strategies for improving radiolabeled peptide imaging and therapy. Q J Nucl Med 2000;44:208-23
  32. Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 2001;42:213-21
  33. Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, et al. PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 2001;42:1053-6
  34. Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001;28:1751-7 https://doi.org/10.1007/s002590100639
  35. Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N. Thyroid Na+/I- symporter. Mechanism, stoichiometry, and specificity. J Biol Chem 1997;272:27230-8 https://doi.org/10.1074/jbc.272.43.27230
  36. Carlin S, Mairs RJ, Welsh P and Zalutsky MR. Sodium-iodide symporter (NIS)-mediated accumulation of [(211)At]astatide in NIS-transfected human cancer cells. Nucl Med Biol 2002;29:729-39 https://doi.org/10.1016/S0969-8051(02)00332-3
  37. Van Sande J, Massart C, Beauwens R, Schoutens A, Costagliola S, Dumont JE, et al. Anion selectivity by the sodium iodide symporter. Endocrinology 2003;144:247-52 https://doi.org/10.1210/en.2002-220744
  38. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, and Vassaux G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 2002;13:1723-35 https://doi.org/10.1089/104303402760293565
  39. Pentlow KS, Graham MC, Lambrecht RM, Cheung NK, and Larson SM. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 1991;18:357-66 https://doi.org/10.1118/1.596728
  40. Paik JY, Lee KH, Byun SS, Choe YS, and Kim BT. Use of insulin to improve [18 F]fluorodeoxyglucose labelling and retention for in vivo positron emission tomography imaging of monocyte trafficking. Nucl Med Commun 2002;23:551-7 https://doi.org/10.1097/00006231-200206000-00007
  41. Botti C, Negri DR, Seregni E, Ramakrishna V, Arienti F, Maffioli L, et al. Comparison of three different methods for radiolabelling human activated T lymphocytes. Eur J Nucl Med 1997;24:497-504 https://doi.org/10.1007/BF01267680
  42. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4- methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A 2002;99: 3030-5 https://doi.org/10.1073/pnas.052709599
  43. Le LQ, Kabarowski JH, Wong S, Nguyen K, Gambhir SS, and Witte ON. Positron emission tomography imaging analysis of G2A as a negative modifier of lymphoid leukemogenesis initiated by the BCR-ABL oncogene. Cancer Cell 2002;1:381-91 https://doi.org/10.1016/S1535-6108(02)00058-2
  44. Dubey P, Su H, Adonai N, Du S, Rosato A, Braun J, et al. Quantitative imaging of the T cell antitumor response by positronemission tomography. Proc Natl Acad Sci U S A 2003;100:1232-7 https://doi.org/10.1073/pnas.0337418100
  45. Koehne G, Doubrovin M, Doubrovina E, Zanzonico P, Gallardo HF, Ivanova A, et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 2003;21:405-13 https://doi.org/10.1038/nbt805
  46. Chang GY, Xie X, and Wu JC. Overview of stem cells and imaging modalities for cardiovascular diseases. J Nucl Cardiol 2006;13:554-69 https://doi.org/10.1016/j.nuclcard.2006.05.012
  47. Wu JC, Tseng JR, and Gambhir SS. Molecular imaging of cardiovascular gene products. J Nucl Cardiol 2004;11:491-505 https://doi.org/10.1016/j.nuclcard.2004.04.004
  48. Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003;107:2134-9 https://doi.org/10.1161/01.CIR.0000062649.63838.C9
  49. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003;107:2290-3 https://doi.org/10.1161/01.CIR.0000070931.62772.4E
  50. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 2005;102:11474-9 https://doi.org/10.1073/pnas.0504388102
  51. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 2005; 112:1451-61 https://doi.org/10.1161/CIRCULATIONAHA.105.537480
  52. Bulte JW and Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17:484-99 https://doi.org/10.1002/nbm.924
  53. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003;108:863-8 https://doi.org/10.1161/01.CIR.0000084828.50310.6A
  54. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005;111:2198-202 https://doi.org/10.1161/01.CIR.0000163546.27639.AA
  55. Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, et al. Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 2003;108:1302-5 https://doi.org/10.1161/01.CIR.0000091252.20010.6E
  56. Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 2006;113:1005-14 https://doi.org/10.1161/CIRCULATIONAHA.105.588954
  57. Wu JC, Spin JM, Cao F, Lin S, Xie X, Gheysens O, et al. Transcriptional profiling of reporter genes used for molecular imaging of embryonic stem cell transplantation. Physiol Genomics 2006;25:29-38 https://doi.org/10.1152/physiolgenomics.00254.2005
  58. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001;358:727-9 https://doi.org/10.1016/S0140-6736(01)05904-9
  59. Buchsbaum DJ, Chaudhuri TR, and Zinn KR. Radiotargeted gene therapy. J Nucl Med 2005;46 Suppl 1:179S-186S
  60. Nettelbeck DM, Jerome V, and Muller R. Gene therapy: designer promoters for tumour targeting. Trends Genet 2000;16:174-81 https://doi.org/10.1016/S0168-9525(99)01950-2
  61. Wu L, Johnson M, and Sato M. Transcriptionally targeted gene therapy to detect and treat cancer. Trends Mol Med 2003;9:421-9 https://doi.org/10.1016/j.molmed.2003.08.005
  62. Iyer M, Sato M, Johnson M, Gambhir SS, and Wu L. Applications of molecular imaging in cancer gene therapy. Curr Gene Ther 2005;5:607-18 https://doi.org/10.2174/156652305774964695
  63. Iyer M, Wu L, Carey M, Wang Y, Smallwood A, and Gambhir SS. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci U S A 2001;98:14595-600 https://doi.org/10.1073/pnas.251551098
  64. Zhang L, Adams JY, Billick E, Ilagan R, Iyer M, Le K, et al. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol Ther 2002;5:223-32 https://doi.org/10.1006/mthe.2002.0551
  65. Qiao J, Doubrovin M, Sauter BV, Huang Y, Guo ZS, Balatoni J, et al. Tumor-specific transcriptional targeting of suicide gene therapy. Gene Ther 2002;9:168-75 https://doi.org/10.1038/sj.gt.3301618
  66. Sato M, Johnson M, Zhang L, Zhang B, Le K, Gambhir SS, et al. Optimization of adenoviral vectors to direct highly amplified prostate-specific expression for imaging and gene therapy. Mol Ther 2003;8:726-37 https://doi.org/10.1016/j.ymthe.2003.08.016
  67. Zhang L, Johnson M, Le KH, Sato M, Ilagan R, Iyer M, et al. Interrogating androgen receptor function in recurrent prostate cancer. Cancer Res 2003;63:4552-60
  68. Johnson M, Sato M, Burton J, Gambhir SS, Carey M, and Wu L. Micro-PET/CT monitoring of herpes thymidine kinase suicide gene therapy in a prostate cancer xenograft: the advantage of a cell-specific transcriptional targeting approach. Mol Imaging 2005;4:463-72
  69. Iyer M, Salazar FB, Lewis X, Zhang L, Carey M, Wu L, et al. Noninvasive imaging of enhanced prostate-specific gene expression using a two-step transcriptional amplification-based lentivirus vector. Mol Ther 2004;10:545-52 https://doi.org/10.1016/j.ymthe.2004.06.118
  70. Dong D, Dubeau L, Bading J, Nguyen K, Luna M, Yu H, et al. Spontaneous and controllable activation of suicide gene expression driven by the stress-inducible grp78 promoter resulting in eradication of sizable human tumors. Hum Gene Ther 2004;15:553-61 https://doi.org/10.1089/104303404323142006
  71. Ray P, De A, Min JJ, Tsien RY, and Gambhir SS. Imaging trifusion multimodality reporter gene expression in living subjects. Cancer Res 2004;64:1323-30 https://doi.org/10.1158/0008-5472.CAN-03-1816
  72. Ray P, Wu AM, and Gambhir SS. Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 2003;63: 1160-5
  73. Liang Q, Gotts J, Satyamurthy N, Barrio J, Phelps ME, Gambhir SS, et al. Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol Ther 2002;6:73-82 https://doi.org/10.1006/mthe.2002.0626
  74. Yu Y, Annala AJ, Barrio JR, Toyokuni T, Satyamurthy N, Namavari M, et al. Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med 2000;6:933-7 https://doi.org/10.1038/78704
  75. Zinn KR, Chaudhuri TR, Krasnykh VN, Buchsbaum DJ, Belousova N, Grizzle WE, et al. Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice. Radiology 2002;223:417-25 https://doi.org/10.1148/radiol.2232010501
  76. Hemminki A, Zinn KR, Liu B, Chaudhuri TR, Desmond RA, Rogers BE, et al. In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus. J Natl Cancer Inst 2002;94:741-9 https://doi.org/10.1093/jnci/94.10.741
  77. Sun X, Annala AJ, Yaghoubi SS, Barrio JR, Nguyen KN, Toyokuni T, et al. Quantitative imaging of gene induction in living animals. Gene Ther 2001;8:1572-9 https://doi.org/10.1038/sj.gt.3301554
  78. Yaghoubi SS, Wu L, Liang Q, Toyokuni T, Barrio JR, Namavari M, et al. Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther 2001;8:1072-80 https://doi.org/10.1038/sj.gt.3301490
  79. Min JJ and Gambhir SS. Gene therapy progress and prospects: noninvasive imaging of gene therapy in living subjects. Gene Ther 2004;11:115-25 https://doi.org/10.1038/sj.gt.3302191
  80. Reszka RC, Jacobs A, and Voges J. Liposome-mediated suicide gene therapy in humans. Methods Enzymol 2005;391:200-8 https://doi.org/10.1016/S0076-6879(05)91012-4
  81. Yaghoubi S, Barrio JR, Dahlbom M, Iyer M, Namavari M, Satyamurthy N, et al. Human pharmacokinetic and dosimetry studies of [(18)F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med 2001;42:1225-34
  82. Penuelas I, Mazzolini G, Boan JF, Sangro B, Marti-Climent J, Ruiz M, et al. Positron emission tomography imaging of adenoviralmediated transgene expression in liver cancer patients. Gastroenterology 2005;128:1787-95 https://doi.org/10.1053/j.gastro.2005.03.024
  83. Penuelas I, Haberkorn U, Yaghoubi S, and Gambhir SS. Gene therapy imaging in patients for oncological applications. Eur J Nucl Med Mol Imaging 2005;32 Suppl 2:S384-403 https://doi.org/10.1007/s00259-004-1629-3