• 제목/요약/키워드: reliability of components

검색결과 1,428건 처리시간 0.03초

Reliability of Phased Mission Systems of where Phase Durations are Random Variables

  • Kim, Kuk
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2002년도 정기학술대회
    • /
    • pp.263-272
    • /
    • 2002
  • Reliability of multi-phased mission system is represented where redundant components are repairable. Failures and repairs of components follow Markovian property Under some constraints, 4 models are available. Two models are represented here. The solutions are obtained as recursive equations using Markov model and eigenvalue system.

  • PDF

Reliability Equivalence of a Non-identical Components Parallel System

  • Montaser, M.;Sarhan, Ammar M.
    • International Journal of Reliability and Applications
    • /
    • 제9권1호
    • /
    • pp.95-112
    • /
    • 2008
  • This paper gives the reliability equivalence factors of a parallel system with n independent and non-identical components. It is assumed here that, the failure rates of the system's components are constants. We used three different methods to improve the system given. Two reliability characteristics (the mean time to failure and the reliability function) are used to perform the system improvement. For this purpose, the reliability functions and the mean times to failures of the original and improved systems are obtained. The results given in this paper generalize the results given in the literatures by setting n = 1, 2. An illustrative numerical example is presented to compare the different reliability factors obtained.

  • PDF

Component-Based System Reliability using MCMC Simulation

  • ChauPattnaik, Sampa;Ray, Mitrabinda;Nayak, Mitalimadhusmita;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • 제20권2호
    • /
    • pp.79-89
    • /
    • 2022
  • To compute the mean and variance of component-based reliability software, we focused on path-based reliability analysis. System reliability depends on the transition probabilities of components within a system and reliability of the individual components as basic input parameters. The uncertainty in these parameters is estimated from the test data of the corresponding components and arises from the software architecture, failure behaviors, software growth models etc. Typically, researchers perform Monte Carlo simulations to study uncertainty. Thus, we considered a Markov chain Monte Carlo (MCMC) simulation to calculate uncertainty, as it generates random samples through sequential methods. The MCMC approach determines the input parameters from the probability distribution, and then calculates the average approximate expectations for a reliability estimation. The comparison of different techniques for uncertainty analysis helps in selecting the most suitable technique based on data requirements and reliability measures related to the number of components.

혼합 중복 k-out-of-n 시스템 신뢰도 최적화 문제 (A k-out-of-n System Reliability Optimization Problem with Mixed Redundancy)

  • 백승원;전건욱
    • 대한산업공학회지
    • /
    • 제39권2호
    • /
    • pp.90-98
    • /
    • 2013
  • The k-out-of-n system with mixed redundancy is defined as k-out-of-n system which both includes warm-standby and cold-standby components. In case that operating components in the system fail and the system needs quick transition of standby components to operation state, the k-out-of-n system with mixed redundancy is useful for decreasing system failure rate and operational cost. Reliability-Redundancy Optimization Problem (RROP) involves selection of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. A solution methodology by using harmony search algorithm for RROP of the k-out-of-n system with mixed redundancy to maximize system reliability was suggested in this study.

광열유체 마이크로 부품의 신뢰성 평가를 위한 시험법에 관한 고찰 (Review on Reliability Test Method for Optical/Thermofluidic Micro Component)

  • 이낙규;나경환;최현석;한창수
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.242-247
    • /
    • 2004
  • Literature review on reliability test method for developing high performance optical/thermofluidic components. Since the miniaturization by the conventional mechanical process is limited to milli-structure, i.e. $10^{-3}m$, new technology for fabricating of mechanical components is needed to match cost, reliability, and integrability criteria of micro-structure. Although numbers of various researches on MEMS/MOEMS devices and components, including material characterization, design and optimization, system validation, etc., the lack of standards and specifications make the researches and developments difficult. For that reason, this paper is intended to propose the methods of reliability test for measuring the mechanical property of optical/ thermofluidic components.

체계 개발 단계별 기계 부품에 대한 신뢰도 예측 시 NSWC-98-LE1 적용 방안 (An application plan of NSWC-98/LE1 when predicting the reliability of mechanical components of design and development phase)

  • 권기상;박은심;조차현;이동우;이수중
    • 시스템엔지니어링학술지
    • /
    • 제4권1호
    • /
    • pp.35-43
    • /
    • 2008
  • Generally, in analysis of reliability of Design and Development Phase, reliability of electrical components is analyzed based on standards such as MIL-HDBK-217F, Bellcore Issue 4,5,6 by analyzing stress of architectural side (Power, Voltage, Current and quality level of components) of weapon system and stress of operational side (operational environment, operational temperature, Operational Profile). But the reliability of mechanical components is analyzed based on the data book of failure history of mechanical parts called NPRD-95(Nonelectronic Parts Reliability Data-95) without any analysis of above stress. However, even if it's the same mechanical parts, it might have different failure rate(fatigue, wear, corrosion) during operation depending on how weary(stress : pressure, vibration, temperature during operation) the parts are. Therefore, analyzing reliability using just data book can cause big difference in reliability instead of analyzing based upon stressfulness that parts might have, operational concept, and other various factors. Thus, This paper will guide the way of predicting reliability by organizing ways of predicting reliability for system organization and adopt ing NSWC-98/LE1(Naval Surface Warfare Center-98/LE1) for mechanical components.

  • PDF

전자부품 통합 신뢰성 Simulator 개발 (Development of Reliability Simulator for Electronic Components)

  • 김완두;이승우;한승우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1749-1753
    • /
    • 2007
  • The reliability, that is Long-Term Quality, require an approaching different from Short-Term Quality which is used before. As the electronic components are able to be easily normalized on the reliability testing, various testing standards are used. In this study, we proposed two reliability simulator that is PoF(Physics of Failure)-based and failure rate models-based. PoF-based simulator is introduced based on CalceEP program that is created by University of Maryland. This simulator can be modified by user interface of properties and PoF models and operated on stand alone system. Failure rate models-based simulator introduced according to analyzing reliability prediction documents. Also, unified database including failure data models is built from existing MIL-HDBK-217F N2, PRISM, and Bellcore, and web-based simulator is developed. The developed reliability simulator will service of the PoF model, properties, failure rate model accumulated and its data by web and internet.

  • PDF

Reliability Equivalence Factors of n-components Series System with Non-constant Failure Rates

  • Mustafa, A.
    • International Journal of Reliability and Applications
    • /
    • 제10권1호
    • /
    • pp.43-57
    • /
    • 2009
  • In this article, we study the reliability equivalence factor of a series system. The failure rates of the system components are functions of time t. we study two cases of non-constat failure rates (i) weibull distribution (ii) linear increasing failure rate distribution. There are two methods are used to improve the given system. Two types of reliability equivalence factors are discussed. Numerical examples are presented to interpret how one can utilize the obtained results.

  • PDF

원전 배관의 반복 측정 데이터에 대한 신뢰도 분석 방법 (Reliability Analysis Method for Repeated UT Measurement Data in Nuclear Power Plants)

  • 윤훈;황경모
    • Corrosion Science and Technology
    • /
    • 제12권3호
    • /
    • pp.142-148
    • /
    • 2013
  • Safety is a major concern in Nuclear Power Plants (NPPs). Piping systems in NPPs are very complex and composed of many components such as tees, elbows, expanders and straight pipes. The high pressure and high temperature water flows inside piping components. As high speed water flows inside piping, the pipe wall thinning occurs in various reasons such as FAC (Flow Accelerated Corrosion), LDIE (Liquid Droplet Impingement Erosion) and Flashing. To inspect the wall thinning phenomenon and protect the piping from damages, piping components are checked by UT measurement in every overhaul. During every overhaul, approximately 200~300 components (40,000~60,000 UT data) are examined in NPPs. There are some methods from EPRI for evaluating wear rate of components. However, only few studies have been conducted to find out the raw data reliability for the wear rate evaluation. Securing the reliable raw data is the key factor for a reasonable evaluation. This paper suggests the reliability analysis method for the repeatedly measured data for wear rate evaluation.

Reliability of a k-out-of-n Cold Standby System with Imperfect Switches

  • Abouammoh, A.M.;Sarhan, Ammar M.
    • International Journal of Reliability and Applications
    • /
    • 제2권4호
    • /
    • pp.253-262
    • /
    • 2001
  • A k-out-of-n standby system is considered where all of its components are s-independent and classified either working or cold standby connected with imperfect switches. The probability density function of the life length for this system is established in closed form, when the underlying components have constant failure rates. Also the reliability function of the system is derived. Finally, the reliability functions for one, two and three out of four systems are deduced for perfect or imperfect switches and identical or non-identical constant failure rates for working and standby components.

  • PDF