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Abstract
Reliability of multi-phased mission system is represented where redundant
components are repairable. Failures and repairs of components follow Markovian
property.
Under some constraints, 4 models are available. Two models are represented
here. The solutions are obtained as recursive equations using Markov model and
eigenvalue system.

1. INTRODUCTION

A phased mission system is defined as "a system where the mission consists
of phased sub-missions and whose relevant configuration changes during time
periods (phases).” As systems increase in complexity and automation, phased
mission analysis is being recognized as the appropriate reliability analysis method
[Alam 86]. Fig. 1 shows an example of 3-phased mission system which consists
of 3 components, where some components are inactive in some phases.

+

Cy'inactive  Co ! inactive

phase 1 phase 2 phase 3

Fig. 1. An Example : 3-phased mission system of 3-components

In past works, there are two classes about multi-phased mission system'’s
reliability; 1) repairable and 2) non-repairable.

The exact reliability of phased mission for non-repairable system is studied
by [Esary 75], where the main ideas are; 1) equivalent transformation into single
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phase, and 2) cut cancellation, that is, a minimal cut in a phase is canceled
from the list of minimal cut sets if it contains a minimal cut set of a later phase.
[Burdick 77] and [Veatch 86] proposed approximation techniques of non-repairable
system. Another exact procedure using Markov model is presented by [Vujosevic
85] for a restricted class of non-repairable components. [Park 90] studied the
reliability apportionment problem subject to multiple resources constraints for
non-repairable phased mission system.

If a system is repairable, genérally it is not simple to obtain the exact
reliability. Little methodology has previously been developed to solve general
repairable phased mission problems systematically. In the case a system is
represented by a set of multi-states according to each component’s binary status
and transitions among states has Markovian property, [Alam 86] studied this
Markov model; a sequential computation of single-phase systems with appropriate
initial conditions. [Montague 80] calculated the mean number of failures of a
phased mission system when the system is repairable or non-repairable using
minimal cut set and minimal path set.

In this paper we assume failure and repair times of components are
exponentially distributed and the system has on-board repair facility, ie., redundant
components are repairable as long as the system is in up states only. Under these
assumptions, which are same as in Alam’s work, the system can be described as
continuous-time Markov model with appropriate definition of states.

We treat two cases; (1) preliminarily, the phase durations are deterministic. A
systematic approach based on Alam’s work is reviewed. Then the computational
reduced set model is proposed. A programmable solution procedure is developed,
introducing eigenvalue system. (2) the phase durations are random variables. 4
models are possible under time constraints. 1) There is no mission time
requirements. 2) The full mission must be finished in a time limit. 3) Mission
phase change times must be finished in some time limits. 4) each submission
duration must be finished in a time limits. We will treat the case 1 and the model
1) of case 2.

2. PRELIMINARY : MISSION REUABILITY FOR DETERMINISTIC PHASE
DURATIONS

2.1 Model Formulation
Notations

t, ¢ duration of phase k&, 1<k<H
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k
T,= Z;tj ! mission phase change time (MPCT), where 7;=0
=

s=[x;] : state vector where x;=1 if component j is good and 0 otherwise,
1<j<c¢, where c is the number of components

¢, ° system status indicator of state 7 being up or down in phase £

p,(w)=[p,(w)] : probability vector (row type) of phase % where p,(u) is the
probability of being in state 7 at the elapsed time # from 7),_;, 0</<2°—1
Ak=[al(-jk)] :  2° dimensional transition rate matrix (TRM) of phase

k, 0<i, j<2°—1.

We assume phase durations follows to exponential distributions. There are
2° possible states according to the status of ¢ components. Let the state
identification numbers ¢=0, 1, ---, 2°~1. The corresponding state vector s, for

state 7 can be obtained by the binary number of i
Let a system status indicator;
) :[l, if 745 up
10, ow
Table 1 shows the state description for the example of Fig. 1.

Table 1. states description and state space of phases

state id. state vector system status indicator

number
(i) (x1,x2, 3} b1 Pai dx
7 111 1 1 1
6 110 1 1 0
5 101 1 1 1
4 100 0 0 0
3 011 0 1 0
2 010 0 1 0
1 001 0 1 0
0 000 0 0 0

Consider a stochastic process { X,(#),u<(0,?]}), where u is the elapsed

time from the starting time of phase % (T}, ), and an observation X,(#%) is the

one of 2¢° states at w This process has time homogeneous Markovian
property [Ross 83]. However it is not time homogeneous during whole
mission time [0,T] since the configuration is changed at each mission
phase change times, ie., transition rates are changed at each phase.

Hence continuous time Markov model can be applied to obtain state

-265-



probabilities for each phase taking into account the appropriate initial condition
[Alam 86].
Let a matrix A, be the transition rate matrix (TRM) for phase k such that;

{aff’ . transition rate from state i to j, i#i,
= (B
Ol ;iaﬁ ,

where i, 7 = 0, 1, -+, 2°=1. The entries consist of failure rates and repair
rates of components.

It is convenient to use a base TRM A to obtain A, where all transition
rates are listed in A assuming failed components are repairable even if the
system is down. ‘A’ is obtained systematically using operations of binary
number. Fig.2. shows the base TRM A for the example of Fig.l.

Then, A, is obtained from A as follows;
a(k)=[azp if ¢h=0
v N0, ow.
There are no repair from a down state to another one, and the failure from

that is no meaningful.

% B #
A —a . Hh
o . TH H
h A . #
A LT
/11 . . A3 "'25 . 127
/11 . /12 . _& H
Al . /12 AS _27

.Z‘i=rowsumexoe1;t (i,1) entry
Fig.2. Base TRM A of the example

Let p.(w) be the states probability Tow vector
[$(20), ", pp()] of phase k, where () =Pr{X,(w)=12}. The corresponding

differential equations to get () are;

d pk(u) _
du
It is known as Kolmogorov's forward equations [Ross 83].
The solution of (1) is

pk(u)Ak’ uE[O,tk],ISkSH. (1)

p.(w)= p, (e 2)

where the matrix exponential eA"“ is defined by the matrix series as follows,
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e M= S ———“j[Ak]j
5
Since the aﬁ,-k) are bounded and state space is finite, this matrix series converges

for all values of u [Dyer 89] [Ross 83l
For phase 1, the state probability at the end of phase 1 is

p, ()= p,(@e™™

The final condition of phase 1 is not the initial condition of phase 2 directly.
Since system failure during phase 1 gives mission abortion, down states cannot

proceed to next phase 2 at 7). Therefore the initial condition of phase 2 is as

follows,
(1), if ¢,=1,
’0={p11(1’. 1:
240=10""" it g,=0.
Generally the initial condition of phase % comes from P, 1 (1),
De0)=Dp—1, {tpy) * Po—1,i 3

which is a sequentially solvable equation.

Finally, the mission reliability is obtained from py(ty)

Ry= goﬁyj(ty) c Py (4)

Next we will develop a solution procedure of mission reliability using
eigenvalue system to computational compact set of equations.

2.2. Solution of the Reliability with Eigenvalues
More Notations (deleting the phase index k)

® : diagonal matrix consisting of eigenvalues §; of a matrix A
M=[m,;] : matrix consisting of the eigenvectors, m;, of A

M '=[w,] : inverse of M.

To obtain the solution of (2), some methods are available. The key to the

solution is to get matrix exponential e For example 1) an approximation by the
matrix series directly, 2) Laplace transformation and algebraic computation, 3) a
method using
eigenvalues and eigenvectors, etc.

A method using eigensystem gives theoretically exact solution and it is easily
programable with helps of computer and general programs to get the solution of
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sufficient precision. Further it is appropriate to phased mission reliability, specially
to the case of probabilistic phase durations with time constraint.

First, we assume A is "semi-simple”, that is, when the eigenvalues of A a)
either are distinct, or b) have multiplicities but with corresponding linearly
independent eigenvectors, the matrix is called semi-simple [Dief 82] [Pease 65].

There is a eigenvalue problem,

A m= mé. 5)
As a matrix form,

AM= M6.
Under assumption of A being semi-simple, M is invertible. Then, by the fact of
A=MO'M and by definition of matrix exponential,

A= Me M1, 6
where the e¢® is a diagonal m n51s Then its entry is;
Therefore the solution of fm ébro aﬁhgg %w by (2) and (3),

B Oute,, (
Ebpk L i{te— 1) 1:27’1() i (ui)

8.t
m(l'?e 1 lw(ulj)

bty = [

=

Therefore the mission reliability R, (4), is obtained by applying above
equations sequentially to computation program.

The program can be made simple using recursive relations. Recursion
generally provides no saving in storage, nor it will be faster. But recursive code
is more compact, and easier to write and understand.

Really, A, has some rows of O vectors, and has no simplicity generally.

Instead, B, of section 3. is required to be semi-simple.
2.3. Reduced Set Computationally Available
More Notations

7(#) : re-orderd index of a state i in phase k, 0<i<n

d, (D) : state identification number of reorderd index I in phase &, 1<I<m,

a,()=[qg,{w)] : n, dimensional up state probability vector (row type)
of phase k at the elapsed time u from T,_,

B,=[b{?1 : mn, dimensional reduced TRM from A, for phase k.
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(B _ B _ (%)
by =aaw,qm and by =agm, q0F — glbu .

Once the system becomes a down state, it never returns to an up state. A
down state can be an absorbing state [Dyer 83] or all down states may be
collapsed into an absorbing state [Kanderhag 78] [Pages 86]. It is sufficient to
retain the entries corresponding to up states in TRM and related differential
equations to get reliability. We can set reduced state space and corresponding
TRM with up states only except down states. It give computational saving
against the model of section 2.1.

Instead of  binary-valued indictor ¢,, we define 7,(i) and d)(I) as
described in Notations. d,(I)=d,_,(J) means ] and 1 are different reordered
indices of an identical state between adjacent phases k-1 and k, then
J=r,_,(d,(D). For example, d3(2)=d,(3)=5 and 7,(d;(2))=7r,(5)=3. This
fact is meaningful to determine the initial condition of each phase.

Then the reduced TRM B, for phase k can be obtained by deleting the
columns and rows related to down states from A, then by reordering the
remainder as described in Notations. Notice the B, is non-singular [Pages 86] in
contrast with A,.

Let q,(«) be the up state probability vector of phase k, whose I-th entry

is g {w)=1 4 4»(%). And similarly as (3)

= Qp—1,Ate-1), itdy(D=d,_,()
24(0) {O, ow (8)
=4k—1,r,_,(d,(1))(tk—1), for Tk_l(dk(l))*o.
The solution at %= ¢, is final condition of phase k,
a,(t)= q,0)e™" )
And its entry is, by (8),
qk](tk) = Z:lqkz(ﬂ)[e&tb]y
Bty
= 10
(nr,,_%.(n#mq"’w)[e ly (10)
— By,
= i B o)l

where [e 2] y is an entry of e ?# as described in section 2.2. Specially

aift) =le Bltl]lﬁ

since q;(0) = (1,0,...,0).



The mission reliability is get from final condition of final phase,

Ru= 3. anftx). (11

4. MISSION RELIABILITY FOR PROBABILISTIC PHASE DURATIONS
4.1. Model 1: Without Mission Time Requirement
More Assumptions

1) The phase duration times are independent random variables whose probability

density functions are f,(#). And moment generating functions of p.d.f. are known.

Lo=| 0°°e or ()t

2) There is no requirement for mission times.

The expected mission reliability is
R =E[Ry(t,,", ty)]

= fooof"'fowRH(tl"“’tH)klifk(tk)dtff“dtl-

This integral is separable. Let 7,;=FE[q,(¢)], then it is derived from (10) by

independency of phase durations.
Hence,

(12)

3 >3 e BB
= u=07’k_1'¢ My WL s
rk]= {11 ¢=7’1—1(d;(1))>0) . (13)

n
k), (1
Z m(lgw vj)L 1v-
v=1
L7}
Then the mission reliability becomes R= ;1 7uy.

Particularly, if ¢, follows exponential distribution f,(f)= a,e ~ ¥, then

=0, (14)

5. CONCLUSION

The Markov approach is useful to obtain the reliability of a system when the
failure and repair times of components are exponentially distributed. In this paper,
we treat a
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phased mission system where redundant failed components are repairable as long
as system is up status.

Under the assumptions, only a reduced set of the linear differential equations
related to up states is sufficient for each phase with appropriate TRM and initial
condition. We used eigensystem especially in solution process, because it gives
theoretically the exact solution to basic model and useful recursive relations to
solve the probabilistic phase duration model.

When phase durations are probabilistic, the reliability is obtained similarly
using the definition of expectations. If there exist a constraint that the mission
must be completed in a given time allowance, assuming the phase durations are
according to exponential distributions, the reliability will be represented as a
recursive relational equation with more complexity.

Generally reliability problems of phased mission system are complex. The
proposed method gives an exact solution theoretically, and the solution can be
obtained practically with the help of computer and general computer programs.

REFERENCES

Alam, M. and U. Al-Saggaf, Quantitative reliability evaluation of repairable
phased-mission systems using Markov approach, IEEE Tr. Rel, 35, 1986,
498-503

Burdick, G. et al, Phased mission analysis: a review of new developments and an
application, IEEE Tr. Rel,, 26, 1977, 43

Deif, A., Advanced Matrix Theory for Scientists and Engineer, Halsted Press, 1982

Dyer, D., Unification of reliability /availability /repairability models for Markov
systems, IEEE Tr. Rel., 38, 1989, 246-252

Esary, J. and H. Ziehms, Reliability Analysis of Phased Missions, in Reliability
Analysis and Fault Tree Analysis, SIAM, Philadelphia, 1975, 213-236

Kanderhag, L., Eigenvalue approach for computing the reliability of Markov
systems, IEEE Tr. Rel, 27, 1978, 337-340

Montague, D. and ]J. Fussel, A Methodology for calculating the expected number
of failures of a system undergoing phase mission, Nuclear Science and
Engineering, 74, 1980, 199-209

Pages, A. and M. Gondran, System Reliability Evaluation and Prediction in
Engineering, Springer-Verlag, 1986

Park, K.S.', Reliability —apportionment for phased-mission oriented systems,
Reliability Engineering and System Safety, 27, 1990, 357-364

Pease, M., Methods of Matrix Algebra, Academic Press, 1965

Ross, S., Stochastic Processes, John Wiley & Sons, 1983

Veatch, M., Reliability of periodic, coherent, binary systems, IEEE Tr. Rel, 35,

-271-



1986, 504 - 507
Vujosevic, M. and D. Meade, Reliability evaluation and optimization of redundant
dynamic system, IEEE Tr. Rel, 34, 1985, 171-174

-272-



