• 제목/요약/키워드: relatively nonexpansive mappings

검색결과 16건 처리시간 0.029초

CONVERGENCE THEOREMS FOR TWO FAMILIES OF WEAK RELATIVELY NONEXPANSIVE MAPPINGS AND A FAMILY OF EQUILIBRIUM PROBLEMS

  • Zhang, Xin;Su, Yongfu
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.583-607
    • /
    • 2010
  • The purpose of this paper is to prove strong convergence theorems for common fixed points of two families of weak relatively nonexpansive mappings and a family of equilibrium problems by a new monotone hybrid method in Banach spaces. Because the hybrid method presented in this paper is monotone, so that the method of the proof is different from the original one. We shall give an example which is weak relatively nonexpansive mapping but not relatively nonexpansive mapping in Banach space $l^2$. Our results improve and extend the corresponding results announced in [W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), Article ID 528476, 11 pages; doi:10.1155/2008/528476] and [Y. Su, Z. Wang, and H. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616?5628] and some other papers.

STRONG CONVERGENCE THEOREM OF FIXED POINT FOR RELATIVELY ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Qin, Xiaolong;Kang, Shin Min;Cho, Sun Young
    • 충청수학회지
    • /
    • 제21권3호
    • /
    • pp.327-337
    • /
    • 2008
  • In this paper, we prove strong convergence theorems of Halpern iteration for relatively asymptotically nonexpansive mappings in the framework of Banach spaces. Our results extend and improve the recent ones announced by [C. Martinez-Yanes, H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006), 2400-2411], [X. Qin, Y. Su, Strong convergence theorem for relatively nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 1958-1965] and many others.

  • PDF

Strong Convergence of Modified Iteration Processes for Relatively Nonexpansive Mappings

  • Kim, Tae-Hwa;Lee, Hwa-Jung
    • Kyungpook Mathematical Journal
    • /
    • 제48권4호
    • /
    • pp.685-703
    • /
    • 2008
  • Motivated and inspired by ideas due to Matsushida and Takahashi [J. Approx. Theory 134(2005), 257-266] and Martinez-Yanes and Xu [Nonlinear Anal. 64(2006), 2400-2411], we prove some strong convergence theorems of modified iteration processes for a pair (or finite family) of relatively nonexpansive mappings in Banach spaces, which improve and extend the corresponding results of Matsushida and Takahashi and Martinez-Yanes and Xu in Banach and Hilbert spaces, repectively.

Strong Convergence of Modified Iteration Processes for Relatively Weak Nonexpansive Mappings

  • Boonchari, Daruni;Saejung, Satit
    • Kyungpook Mathematical Journal
    • /
    • 제52권4호
    • /
    • pp.433-441
    • /
    • 2012
  • We adapt the concept of shrinking projection method of Takahashi et al. [J. Math. Anal. Appl. 341(2008), 276-286] to the iteration scheme studied by Kim and Lee [Kyungpook Math. J. 48(2008), 685-703] for two relatively weak nonexpansive mappings. By letting one of the two mappings be the identity mapping, we also obtain strong convergence theorems for a single mapping with two types of computational errors. Finally, we improve Kim and Lee's convergence theorem in the sense that the same conclusion still holds without the uniform continuity of mappings as was the case in their result.

STRONG CONVERGENCE THEOREMS FOR GENERALIZED VARIATIONAL INEQUALITIES AND RELATIVELY WEAK NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Liu, Ying
    • East Asian mathematical journal
    • /
    • 제28권3호
    • /
    • pp.265-280
    • /
    • 2012
  • In this paper, we introduce an iterative sequence by using a hybrid generalized $f$-projection algorithm for finding a common element of the set of fixed points of a relatively weak nonexpansive mapping an the set of solutions of a generalized variational inequality in a Banach space. Our results extend and improve the recent ones announced by Y. Liu [Strong convergence theorems for variational inequalities and relatively weak nonexpansive mappings, J. Glob. Optim. 46 (2010), 319-329], J. Fan, X. Liu and J. Li [Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces, Nonlinear Analysis 70 (2009), 3997-4007], and many others.

STRONG CONVERGENCE OF MODIFIED ISHIKAWA ITERATION FOR TWO RELATIVELY NONEXPANSIVE MAPPINGS IN A BANACH SPACE

  • Liu, Ying;Wang, Xian;He, Zhen
    • East Asian mathematical journal
    • /
    • 제25권1호
    • /
    • pp.97-105
    • /
    • 2009
  • In this paper, we prove a strong convergence theorem for a common fixed point of two relatively nonexpansive mappings in a Banach space by using the modified Ishikawa iteration method. Our results improved and extend the corresponding results announced by many others.

STRONG CONVERGENCE THEOREMS FOR FIXED POINT PROBLEMS OF ASYMPTOTICALLY QUASI-𝜙-NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE

  • Jeong, Jae Ug
    • Journal of applied mathematics & informatics
    • /
    • 제32권5_6호
    • /
    • pp.621-633
    • /
    • 2014
  • In this paper, we introduce a general iterative algorithm for asymptotically quasi-${\phi}$-nonexpansive mappings in the intermediate sense to have the strong convergence in the framework of Banach spaces. The results presented in the paper improve and extend the corresponding results announced by many authors.

MONOTONE CQ ALGORITHM FOR WEAK RELATIVELY NONEXPANSIVE MAPPINGS AND MAXIMAL MONOTONE OPERATORS IN BANACH SPACES

  • Kang, Jinlong;Su, Yongfu;Zhang, Xin
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.293-309
    • /
    • 2011
  • The purpose of this article is to prove strong convergence theorems for weak relatively nonexpansive mapping which is firstly presented in this article. In order to get the strong convergence theorems for weak relatively nonexpansive mapping, the monotone CQ iteration method is presented and is used to approximate the fixed point of weak relatively nonexpansive mapping, therefore this article apply above results to prove the strong convergence theorems of zero point for maximal monotone operators in Banach spaces. Noting that, the CQ iteration method can be used for relatively nonexpansive mapping but it can not be used for weak relatively nonexpansive mapping. However, the monotone CQ method can be used for weak relatively nonexpansive mapping. The results of this paper modify and improve the results of S.Matsushita and W.Takahashi, and some others.