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STRONG CONVERGENCE THEOREMS FOR FIXED POINT
PROBLEMS OF ASYMPTOTICALLY
QUASI-¢g-NONEXPANSIVE MAPPINGS IN THE
INTERMEDIATE SENSE

JAE UG JEONG

ABSTRACT. In this paper, we introduce a general iterative algorithm for
asymptotically quasi-¢-nonexpansive mappings in the intermediate sense
to have the strong convergence in the framework of Banach spaces. The
results presented in the paper improve and extend the corresponding results
announced by many authors.
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1. Introduction

Let E be a real Banach space with the dual space E*. Let C' be a nonempty
closed convex subset of E. Let T : C' — C be a nonlinear mapping. We denote
by F(T') the set of fixed points of T.

A mapping T : C' — C is said to be nonexpansive if

[Tz =Tyl <z —yl, Va,yeC.

Three classical iteration processes are often used to approximate a fixed point
of nonexpansive mapping. The first one is introduced by Halpern [3] and is
defined as follows: Take an initial point xy € C arbitrarily and define {x,,}
recursively by

Tpt1 = tpxo + (1 —tp,)Txpn, neEN, (1.1)
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where {t,}22 is a sequence in the interval [0, 1]. The second iteration process
is now known as Mann’s iteration process [6] which is defined as

Tpy1 = @pZp + (1 —apn)Tz,, neN, (1.2)

where the initial point z; is taken in C arbitrarily and the sequence {ay, }S2
is in the interval [0, 1]. The third iteration process is referred to as Ishikawa’s
iteration process [5] which is defined recursively by

1.3
Tpi1 = @nZp + (1 —an)Tyn, neN, (1.3)

where the initial point z; is taken in C arbitrarily, {a,}52; and {3,}32, are
sequences in the interval [0, 1].

In general not much is known regarding the convergence of the iteration pro-
cesses (1.1)-(1.3) unless the underlying space E has elegant properties which we
briefly mention here.

Recently, Matsushita and Takahashi [7] proved strong convergence theorems
for approximation of fixed points of relatively nonexpansive mappings in a uni-
formly convex and uniformly smooth Banach space. More precisely, they proved
the following theorem.

Theorem 1.1. Let E be a uniformly conver and uniformly smooth Banach
space, let C' be a nonempty closed convex subset of E, let T be a relatively
nonexpansive mapping from C into itself and let {a,} be a sequence of real
numbers such that 0 < a,, < 1 and limsup,,_, . a, < 1. Suppose that {z,} is
given by

rog=z € C,
Yn = J HapJz, + (1 — ap)JTx,),
Hy = {2 € C: bz p) < 6(z2)) (1.4)

W,={z¢€C:{(x, —z,Jx — Jx,) > 0},
Tn+1 = HHnﬂanm n= Oa 1727' )

where J is the duality mapping on E. If F(T) is nonempty, then {x,} converges
strongly to Il p(ryxo, where Il p(ry is the generalized projection from C onto F(T).

In [4], Hao introduced the following iterative scheme for approximating a
fixed point of asymptotically quasi-¢-nonexpansive mappings in the intermediate
sense in a reflexive, strictly convex and smooth Banach space: x¢ € E, Cy = C,
z1 = Ile, 2o,

Yo = J HanJz, + (1 —ap)JT ),
Cni1 = {Z €Cp: ¢(Zayn) < ¢(Z7xn) +€n}> (1.5)
Tpy1 =Ue, o1, YR > 1,

where fn = HlaX{O, suppEF(T),mEC(¢(p7 Tnz) - ¢(pa I))}
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Motivated by the fact above, the purpose of this paper is to prove a strong con-
vergence theorem for finding a fixed point of asymptotically quasi-¢-nonexpansive
mappings in the intermediate sense in a reflexive, strictly convex and smooth
Banach space, which has the Kadec-Klee property.

2. Preliminaries

Let F be a real Banach space and let E* be the dual space of E. The duality
mapping J : E — 25" is defined by

J(@) ={f € B*: {z, f) = |«|* = I fII*}.

By Hahn-Banach theorem, J(z) is nonempty.
The modulus of convexity of E is the function dg : (0,2] — [0, 1] defined by

r+y

2
E is said to be uniformly convex if Ve € (0, 2], there exists a § = d(¢) > 0 such
that for z,y € E with |[z| <1, |ly| < 1 and ||z —y| > e, then || 2| <1 —0.
Equivalently, ' is uniformly convex if and only if dg(c) > 0, Ve € (0,2]. FE is
strictly convex if forall x,y € E, z # y, ||z|| = ||y|| = 1, we have || Az+(1-N)y|| <
1, VA € (0,1). The space F is said to be smooth if the limit

e+ iyl |

t—0 t
exists for all z,y € S(FE) = {z € E : ||z| = 1}. It is also said to be uniformly
smooth if the limit exists uniformly in z,y € S(E).

It is well known that if £ is uniformly smooth, then J is norm-to-norm uni-
formly continuous on each bounded subset of F. If E is smooth, then J is
single-valued.

Recall that a Banach space E has the Kadec-Klee property if for any sequence
{z,} C F and z € E with z,, — z and ||z,|| — ||z||, then ||z, — z| — 0 as
n — oo. It is well known that if E' is a uniformly convex Banach space, then F
has the Kadec-Klee property.

In what follows, we always use ¢ : E x E — R to denote the Lyapunov
functional defined by

o(x,y) = ol = 20z, Jy) + |yl?, Va.y € .
It follows from the definition of ¢ that
(Il = lyl)? < é(z,y) < (2l + lyl)?, Va,y € B, (2.1)

Sp(e) = inf{1 — |

I Mzl = Mlyll = 1,e = [lz — I}

and
¢z, T Ay + (1= M) J2)) < Ap(a,y) + (1= Ng(x,2), Va,y,2 € E. (2.2)
Following Alber [1], the generalized projection Il : E — C' is defined by
le(z) ={u € C: ¢(u,x) =ming(y,x)}, Vo e B
y



624 J. U. Jeong

The existence and uniqueness of the operator IIx follows from the properties of
the function ¢(z,y) and strict monotonicity of mapping J (see [1,2,10]).

Lemma 2.1 ([1]). Let E be a reflexive, strictly convex and smooth Banach space
and C' be a nonempty closed convex subset of E. Then the following conclusions
hold:

(a) ¢(z,1lcy) + o(lley,y) < é(x,y), VzelyekE;
(b) Ifx € E and z € C, then z =lex & (z —y,Jr — Jz) >0, VyeC;
(c) For x,y € E, ¢(x,y) =0 if and only if x = y.

Remark 2.1. If E is a real Hilbert space, then ¢(z,y) = ||z — y||*> and Il¢ is
the metric projection Po of E onto C.

Definition 2.2. Let C' be a nonempty closed convex subset of E and let T
be a mapping from C into itself. A point p € C is said to be an asymptotic
fixed point of T' if C' contains a sequence {x,, }, which converges weakly to p and
lim, o0 ||2n — T2y || = 0.

The set of asymptotic fixed points of T is denoted by F(T).
Definition 2.3. A mapping 7': C' — C' is said to be
(1) relatively nonexpansive if F(T) = F(T) # ¢ and
o(p,Tx) < ¢(p, )
for all x € C and p € F(T);
(2) quasi-¢-nonexpansive if F(T') # ¢ and
¢(p, Tx) < ¢(p, )
for all x € C and p € F(T');
(3) asymptotically quasi-¢-nonexpansive if F(T') # ¢ and there exists a se-
quence {k,} C [0,00) with k, — 1 as n — oo such that
o(p, T"x) < kno(p, )

forallz € C,p € F(T) and n > 1;
(4) asymptotically quasi-¢-nonexpansive in the intermediate sense if F/(T') # ¢
and

limsup sup (¢(p,T"z) — ¢(p,x)) < 0.
n—oo peF(T),zeC

Put

gn = maX{O, sup (¢(p7 Tnx) - ¢(pa CU))}
pEF(T),zeC

Remark 2.2. From the definition, it is obvious that &, — 0 as n — oo and
o(p,T"z) < ¢(p,x) + &, Vp € F(T),z e C. (2.3)
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Remark 2.3. (1) It is easy to see that the class of quasi-¢-nonexpansive map-
pings contains the class of relatively nonexpansive mappings.

(2) The class of asymptotically quasi-¢-nonexpansive mappings is more gen-
eral than the class of relatively asymptotically nonexpansive mappings.

(3) The class of asymptotically quasi-¢-nonexpansive mappings in the inter-
mediate sense is a generalization of the class of asymptotically quasi-nonexpansive
mappings in the intermediate sense in the framework.

Recall that T is said to be asymptotically regular on C' if for any bounded
subset K of C,

lim sup |72 — T"2| = 0.
n—oo e K

Definition 2.4. A mapping T : C' — C is said to be closed if for any sequence
{z,} C C with z,, —» z and Tz, » y, Tz = y.

Lemma 2.5 ([4]). Let E be a reflexive, strictly convex and smooth Banach space
such that both E and E* have the Kadec-Klee property. Let C be a nonempty
closed and convex subset of E. Let T : C — C be a closed and asymptotically
quasi-¢-nonexpansive mapping in the intermediate sense. Then F(T) is a closed
conver subset of C.

3. Main results

Theorem 3.1. Let E be a reflexive, strictly convex and smooth Banach space
such that both E and E* have the Kadec-Klee property. Let C be a nonempty
closed convex subset of E. Let T : C — C be a closed, asymptotically regu-
lar and asymptotically quasi-¢-nonexpansive mapping in the intermediate sense.
Let {a,} be a sequence in [0,1] and {8} be a sequence in (0,1) satisfying the
following conditions:

(1) limy, 00 cty = 0;

(i) 0 < liminf, o Bn < limsup,,_, . Bn < 1.

Let {x,,} be a sequence generated by

x1 € E  chosen arbitrarily,
C1=C,
Yn = J HanJzr + (1 — ap)(BuJxn + (1 = Bn)JJT )], (3.1)
Cr1={2 € Oy : 8(2,4n) < an@(2,21) + (1 — ) (2, 70) + &n},
Tny1 =g, 1, Yn2>1,
where &, = max{0,Sup,cp (1) ec(d(p, T"7) — d(p,2))}, e, ,, is the general-

ized projection of E onto Cpy1. If F(T) is bounded in C, then {x,} converges
strongly to Up(ryr.
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Proof. Tt follows from Lemma 2.2 that F(T) is a closed convex subset of C, so
that gz is well defined for any z € C.

We split the proof into six steps.

Step 1. We first show that C,,, n > 1, is nonempty, closed and convex.

It is obvious that C; = C' is closed and convex. Suppose that C,, is closed and
convex for some n > 2. For 21,29 € Cpy1, we see that 21,20 € C,. It follows
that z =tz + (1 — t)2z2 € C,,, where t € (0,1). Notice that

A(21,Yn) < and(z1,21) + (1 = an)d(21, 2n) + &n,
and
¢(z27yn) S an¢(22,1‘1) + (1 - Oén)¢(2’2,$n) + fn
These are equivalent to
20, (21, Jx1) + 2(1 — an) (21, Jx0) — 2(z1, Jyn)
< aglz|? + (1= an)llzall? = [[ynll® + &, (3.2)
and
20 (22, Jx1) + 2(1 — o) (22, Jxn) — 2(22, Jyn)
< agllz |+ (1= an)llzall? = [[ynll® + & (3.3)

Multiplying ¢ and 1 — ¢ on both sides of (3.2) and (3.3), respectively, we obtain
that

20 (z, Jx1) + 2(1 — an)(z, Jn) — 2(z, Jyn)
< apllza]® 4+ (1= an)zall® = Nyl + &n-
That is,
1211 = 2(z, Jyn) + llynll® < an(llz]* = 2(z, Ja1) + |21]?)
+ (1= an)([I21* = 22, Jan) + ||zn]®) + &
Therefore, we have
¢(Zayn) < an(b(zaxl) + (1 - an>¢(zvxn) + &
This implies that C),; is closed and convex for all n > 1.

Step 2. We show that F(T) C Cy,, ¥n > 1.

For n =1, we have F(T) C C; = C. Now, assume that F(T) C C,, for some
n>2. Put w, = J Y BpJxn + (1 - Bn)JT™x,). For each x* € F(T), we obtain
from (2.2) and (2.3) that

¢(x*ayn) = ¢(x*7 Jﬁl(aancl + (1 - an)an))
< Oén¢(x*7$1) + (1 - an)¢>(m*7wn)
and
P(z*,wn) = ¢(x*, T (Bpdan + (1 — Bn)JT xy,))
< ﬂn(b(x*a xn) + (1 - ﬂn>¢(fli*,Tn.Tn)
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< Bno(a”, xn) + (1= B)(@(27, 2n) + &n)
< ¢(a", ) + &n.
Therefore, we have
P(z",yn) < and(z”,21) + (1 — an)(P(z™, 2n) + &)
S ang(a”,z1) + (1= an)o(z™, zn) + &
So, * € Cyp11. It implies that F(T) C Cp1.

Step 3. We prove that {z,} is bounded and lim,, o ¢(2n, 1) exists.
Since x,, = Il¢, x1, we have from Lemma 2.1 that

(Xn —y,Jor — Jp) >0, Vy e Cy.
Again, since F(T') C C,,, we have
(xn — ", Jx1 — Ja,) >0, Va* € F(T).
It follows from Lemma 2.1 that for each v € F(T') and for each n > 1,
¢(zn, 1) = ¢(llg, z1,71)
< ¢(u, 1) — du, )
< o(u, 21).

Therefore, {¢(z,,z1)} is bounded. By virtue of (2.1), {z,} is also bounded.
Again, since x, = g, 21, Tpy1 = e, , 21 and zp41 € Cpyq C Cy, for all
n > 1, we have

n+1

A(xn,11) < P(Tpy1,21), Yn>1

This implies that {¢(z,,21)} is nondecreasing and bounded. Hence, lim,, o ¢(2y, 21)
exists.

Step 4. Next, we prove that x,, — T, where T is some point in C.

Now, since {x,,} is bounded and the space F is reflexive, we may assume that
there exists a subsequence {z,,} of {z,} such that x,,, — Z. Since C,, is closed
and convex, it is easy to see that T € C,, for each n > 1. This implies that

¢($ni,$1) < ¢(§7x1)7 n;.

On the other hand, it follows from the weak lower semicontinuity of the norm
that

0@, 21) = [[7]* = 27, Ja1) + 1|
< timinf(, 12 = 240, J21) + 1)

= liminf ¢(zp,, 1)
Mni—>00
S ¢(§7 .’171)7
which implies that ¢(z,,,z1) = ¢(T,x1) as n; — oo. Hence, |zn, || — ||Z]| as
n; — 0o0. In view of the Kadec Klee property of E, we see that x,, — T as n; —
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oo. If there exists another subsequence {z,,} of {z,} such that z,,, — 2* € C,
we have

¢(T,2") = lim  ¢(zn,,Tn;)

i ,Mj—>00

|
=
=

xnia HC"]' ‘rl)

< lim [(b xnwxl) _(b(Hanxl?xl)]

T ,Mj—>00 (
= lim [(b(l'n“i'l) - (b(xnj’xl)}
T ,Mj—>00
which implies T = x*. This shows that z,, — .
Step 5. Now we prove that T € F(T).
Since z, = Ilg, x1, Tp41 = g, ., 21 € Chyr C Cp and limy, o0 ¢(20, 21)
exists, we see that
¢($n+17$n) = ¢(xn+1a chwl)
< O(Tny1,71) — ¢, 21, 21)
= ¢(Tny1,21) — ¢(Tn, 71).

Hence, we have

a3h, ont1,En) =0

Since xp 41 € Cpy1, T — T and o, — 0, it follows from (3.1) and Remark 2.2
that

A(Tnt1,Yn) < and(Tnt1,71) + (1 — @n)@(@nt1,2n) +§n — 0 (3.4)
as n — oo. This implies that
1 ([~ llyal)? = 0.
Therefore we obtain
Jim lya || = [1Z]]- (3.5)
and so
Jim [Ty, = (1) (3.6)

This shows that {Jy,} is bounded. Since E is reflexive, E* is reflexive. Without
loss of generality, we can assume that J(y,) — 3y € E*. In view of reflexivity of
E, we see that J(E) = E*. Hence, there exists y € E such that Jy = 3. This
implies that J(y,) — Jy. And

¢($n+17yn) = ”-Z'n-i-lll2 - 2<J)n+1a Jyn> + Hyn||2
= |lznt1l” = 2(@nt1, Jyn) + ([ Tynll*. (3.7)
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Taking liminf,,_,, for both sides of (3.7), we have from (3.4) that
0> |[z|* - 2(z, Jy) + || Tyl
= |zl* - 2(z, Jy) + lyll* = &(z. ),
which shows that T = y and so
J(yn) — JZT.

It follows from (3.6) and the Kadec-Klee property of E* that J(y,) — JZ. Since
J~1 is norm-weak-continuous, we have

Yp — T. (3.8)
It follows from (3.5),(3.8) and the Kadec-Klee property of E that we have
Yn —> T. (3.9)

On the other hand, since {z,} is bounded and T is asymptotically quasi-¢-
nonexapnsive in the intermediate sense, for any given p € F(T'), we have from
(2.3) that

o(p, T"xn) < ¢(pyn) +&n, 1> 1
This implies that {T™z,} is bounded. Since
lwnll = 1771 (Brd 2 + (1 = Ba) JT" 2|
< Bullzall + (1= Bu) | T" 24|
< max{||zn|, [T"2a ]},
it implies that {w,} is also bounded. From (3.1), we have
Tim [y — Jwn | = Tim o | Jay — (Bdw, + (1 - 5,)T",)|
= nh_)rrgo an||Jx1 — Jwy||
=0.

It follows from (3.9) that Jw, — JT as n — co. Since J~! is norm-weakly-
continuous, this implies that

W, — T (3.10)
as n — oo. Note that
im [l ~ [l = lim [T, |~ [l

< lim [|[Jw, — JT|
n— oo
=0.
This together with (3.10) shows that
Wy, — T
as n — oo. Since z, — T, we have Jx,, — JZ. Since
Jwy, — JT = BpJan, + (1 = Bp)JT" "z, — JT
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=Bn(Jxy, — JT)+ (1 — B,)(JT 2y — JT),
lim (1 -8 )||JT"x — JZ|| < lim ||Jw, — JZ|| + lim B,||Jz, — JZ||
n— 00 n— o0 n— 00
=0. (3.11)
By condition (ii) and (3.11), we have that
ILm |JT"x, — Jz| = 0. (3.12)

Since J~! is norm-weakly-continuous, this implies that

Tz, — . (3.13)
It follows from (3.12) that
Jim ([T, | = [zl = lim [Tz, — || Jz]]

< lim [|JT"z, — JZ||
n—oo
=0.
This together with (3.13) and the Kadec-Klee property of E shows that
Tz, - T
as n — 0o. Again, by the asymptotic regularity of T, we have

I, — 7| < T — T + |7, — 7

—0

as n — oo. That is, lim,,_,o TT"x, = T. It follows from the closedness of T'
that TZ =7, i.e., T € F(T).

Step 6. Finally, we prove that z,, — T = [l p)21.
Let w = Ilp(ryz1. Since w € F(T) C C, and x,, = Il¢, z1, we have

(xn,x1) < d(w,z1), Vn>1.
This implies that

¢(f,1’1) = nILH;O ¢($n7$1)

< o(w, xq). (3.14)

From the definition of Ilg(mz1, T € F(T) and (3.14), we see that T = w. This
completes the proof. O
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Remark 3.1. If we take o, = 0 for all n € N| then the iterative scheme (3.1)
reduces to following scheme:

x9 € E chosen arbitrarily,

C,=0C,

Yn = Jﬁl(ﬂnjl'n + (1 - ﬂn)JTnxn)

Cny1 ={2 € Cp: 9(2,yn) < 0(2,2n) + &0},

Tpp1 =g, 21, Vn2>1,

where

fn = maX{O, sup (¢(p7 Tnx) - (b(pa JJ))},
pEF(T),zeC

which is (1.2) and an improvement to (1.1).

In the framework of Hilbert spaces, Theorem 3.1 is reduced to the following.

Corollary 3.2. Let E be a Hilbert space. Let C be a nonempty closed convex
subset of H. Let T : C — C be a closed, asymptotically reqular and asymptot-
ically quasi-g-nonexpansive mapping in the intermediate sense. Let {ay} be a
sequence in [0,1] and {B,} be a sequence in (0, 1) satisfying the following condi-
tions:

(i) lim,, o @ty = 0;
(#1) 0 < liminf, o Bp <limsup, .. Bn < 1.
Let {x,} be a sequence generated by
x1 € E  chosen arbitrarily,
Ci=0C,
Yn = a1 + (1 — an)(Bnzn + (1 — Bp)T"2y),
Crny1={z€Cpn:llz = yall® < anllz = 21> + (1 — )|z — 2al® + &0},
Tn+1 = Pe, 71, Yn2>1,

where
& =max{0, sup (lp—T"z|* —|]p—=|*)},
peEF(T),zeC
Pg, ., is the metric projection from E onto Cpy1. If F(T) is bounded in C, then

{xn} converges strongly to Pp(pyxy.

Proof. . If Eis a Hilbert space, then J = I (the identity mapping) and ¢(x,y) =
|z — y||?>. We can obtain the desired conclusion easily from Theorem 3.1. This
completes the proof.

If T is quasi-¢- nonexpansive, then Theorem 3.1 is reduced to the following
without involving boundedness of F(T') and asymptotically regularity on C. O
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Corollary 3.3. Let E be a reflexive, strictly conver and smooth Banach space
such that both E and E* have the Kadec-Klee property. Let C be a nonempty
closed convex subset of E. Let T : C — C be a closed, quasi-¢-nonexpansive
mapping with F(T) # ¢. Let {a,} be a sequence in [0,1] and {B,} be a sequence
in (0,1) satisfying the following conditions:

(i) lim,, o0ty = 0;
(#1) 0 < liminf, o B <limsup,_,. Bn < 1.
Let {x,} be a sequence generated by

x1 € E  chosen arbitrarily,

C,=C.

yn = J HanJzr + (1 — an)(Budzn + (1 — Bn)JTz,)),
Cnt1={2€Ch:0(2,yn) < and(z,21) + (1 — an)o(z,2,)},
Tni1 =g, 71, Yn2>1,

where Ilg, ., is the generalized projection of E onto Cy 1. Then {x,} converges
strongly to U pryzy.

Remark 3.2. (1) By Remark 3.1, Theorem 3.1 extends Theorem 2.1 of Hao [4].

(2) Theorem 3.1 generelized Theorem 3.1 of Matsushita and Takahashi [7] in
the following respects:

(i) from the relatively nonexpansive mapping to the asymptotically quasi-
¢-nonexpansive mapping in the intermediate sense;

(ii) from a uniformly convex and uniformly smooth Banach space to a
reflexive, strictly convex and smooth Banach space.

(3) Corollary 3.1 generalized and improves Corollary 2.5 of Hao [4], Theorem
3.4 of Nakajo and Takahashi [8] and Theorem 2.1 of Su and Qin [9] in the
following aspects:

(i) Algorithm of Corollary 3.1 is different from algorithms in [4,8,9].
(i) Corollary 3.1 includes Corollary 2.5 of Hao [4] as a special case.
(iii) The set @, in [8,9] have been relaxed.
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