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STRONG CONVERGENCE THEOREMS FOR FIXED POINT

PROBLEMS OF ASYMPTOTICALLY

QUASI-ϕ-NONEXPANSIVE MAPPINGS IN THE

INTERMEDIATE SENSE

JAE UG JEONG

Abstract. In this paper, we introduce a general iterative algorithm for

asymptotically quasi-ϕ-nonexpansive mappings in the intermediate sense
to have the strong convergence in the framework of Banach spaces. The
results presented in the paper improve and extend the corresponding results
announced by many authors.
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1. Introduction

Let E be a real Banach space with the dual space E∗. Let C be a nonempty
closed convex subset of E. Let T : C → C be a nonlinear mapping. We denote
by F (T ) the set of fixed points of T .

A mapping T : C → C is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

Three classical iteration processes are often used to approximate a fixed point
of nonexpansive mapping. The first one is introduced by Halpern [3] and is
defined as follows: Take an initial point x0 ∈ C arbitrarily and define {xn}
recursively by

xn+1 = tnx0 + (1− tn)Txn, n ∈ N, (1.1)
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where {tn}∞n=1 is a sequence in the interval [0, 1]. The second iteration process
is now known as Mann’s iteration process [6] which is defined as

xn+1 = αnxn + (1− αn)Txn, n ∈ N, (1.2)

where the initial point x1 is taken in C arbitrarily and the sequence {αn}∞n=1

is in the interval [0, 1]. The third iteration process is referred to as Ishikawa’s
iteration process [5] which is defined recursively by{

yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn, n ∈ N,
(1.3)

where the initial point x1 is taken in C arbitrarily, {αn}∞n=1 and {βn}∞n=1 are
sequences in the interval [0, 1].

In general not much is known regarding the convergence of the iteration pro-
cesses (1.1)-(1.3) unless the underlying space E has elegant properties which we
briefly mention here.

Recently, Matsushita and Takahashi [7] proved strong convergence theorems
for approximation of fixed points of relatively nonexpansive mappings in a uni-
formly convex and uniformly smooth Banach space. More precisely, they proved
the following theorem.

Theorem 1.1. Let E be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of E, let T be a relatively
nonexpansive mapping from C into itself and let {αn} be a sequence of real
numbers such that 0 ≤ αn < 1 and lim supn→∞ αn < 1. Suppose that {xn} is
given by 

x0 = x ∈ C,

yn = J−1(αnJxn + (1− αn)JTxn),

Hn = {z ∈ C : ϕ(z, yn) ≤ ϕ(z, xn)}
Wn = {z ∈ C : ⟨xn − z, Jx− Jxn⟩ ≥ 0},
xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, · · · ,

(1.4)

where J is the duality mapping on E. If F (T ) is nonempty, then {xn} converges
strongly to ΠF (T )x0, where ΠF (T ) is the generalized projection from C onto F (T ).

In [4], Hao introduced the following iterative scheme for approximating a
fixed point of asymptotically quasi-ϕ-nonexpansive mappings in the intermediate
sense in a reflexive, strictly convex and smooth Banach space: x0 ∈ E, C1 = C,
x1 = ΠC1x0, 

yn = J−1(αnJxn + (1− αn)JT
nxn),

Cn+1 = {z ∈ Cn : ϕ(z, yn) ≤ ϕ(z, xn) + ξn},
xn+1 = ΠCn+1x1, ∀n ≥ 1,

(1.5)

where ξn = max{0, supp∈F (T ),x∈C(ϕ(p, T
nx)− ϕ(p, x))}.
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Motivated by the fact above, the purpose of this paper is to prove a strong con-
vergence theorem for finding a fixed point of asymptotically quasi-ϕ-nonexpansive
mappings in the intermediate sense in a reflexive, strictly convex and smooth
Banach space, which has the Kadec-Klee property.

2. Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. The duality
mapping J : E → 2E

∗
is defined by

J(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥2 = ∥f∥2}.

By Hahn-Banach theorem, J(x) is nonempty.
The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE(ε) = inf{1− ∥x+ y

2
∥ : ∥x∥ = ∥y∥ = 1, ε = ∥x− y∥}.

E is said to be uniformly convex if ∀ε ∈ (0, 2], there exists a δ = δ(ε) > 0 such
that for x, y ∈ E with ∥x∥ ≤ 1, ∥y∥ ≤ 1 and ∥x − y∥ ≥ ε, then ∥x+y

2 ∥ ≤ 1 − δ.
Equivalently, E is uniformly convex if and only if δE(ε) > 0, ∀ε ∈ (0, 2]. E is
strictly convex if for all x, y ∈ E, x ̸= y, ∥x∥ = ∥y∥ = 1, we have ∥λx+(1−λ)y∥ <
1, ∀λ ∈ (0, 1). The space E is said to be smooth if the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for all x, y ∈ S(E) = {z ∈ E : ∥z∥ = 1}. It is also said to be uniformly
smooth if the limit exists uniformly in x, y ∈ S(E).

It is well known that if E is uniformly smooth, then J is norm-to-norm uni-
formly continuous on each bounded subset of E. If E is smooth, then J is
single-valued.

Recall that a Banach space E has the Kadec-Klee property if for any sequence
{xn} ⊂ E and x ∈ E with xn ⇀ x and ∥xn∥ → ∥x∥, then ∥xn − x∥ → 0 as
n → ∞. It is well known that if E is a uniformly convex Banach space, then E
has the Kadec-Klee property.

In what follows, we always use ϕ : E × E → R to denote the Lyapunov
functional defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀x, y ∈ E.

It follows from the definition of ϕ that

(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2, ∀x, y ∈ E, (2.1)

and

ϕ(x, J−1(λJy + (1− λ)Jz)) ≤ λϕ(x, y) + (1− λ)ϕ(x, z), ∀x, y, z ∈ E. (2.2)

Following Alber [1], the generalized projection ΠC : E → C is defined by

ΠC(x) = {u ∈ C : ϕ(u, x) = min
y∈C

ϕ(y, x)}, ∀x ∈ E.
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The existence and uniqueness of the operator ΠC follows from the properties of
the function ϕ(x, y) and strict monotonicity of mapping J (see [1,2,10]).

Lemma 2.1 ([1]). Let E be a reflexive, strictly convex and smooth Banach space
and C be a nonempty closed convex subset of E. Then the following conclusions
hold:

(a) ϕ(x,ΠCy) + ϕ(ΠCy, y) ≤ ϕ(x, y), ∀x ∈ C, y ∈ E;
(b) If x ∈ E and z ∈ C, then z = ΠCx ⇔ ⟨z − y, Jx− Jz⟩ ≥ 0, ∀y ∈ C;
(c) For x, y ∈ E, ϕ(x, y) = 0 if and only if x = y.

Remark 2.1. If E is a real Hilbert space, then ϕ(x, y) = ∥x − y∥2 and ΠC is
the metric projection PC of E onto C.

Definition 2.2. Let C be a nonempty closed convex subset of E and let T
be a mapping from C into itself. A point p ∈ C is said to be an asymptotic
fixed point of T if C contains a sequence {xn}, which converges weakly to p and
limn→∞ ∥xn − Txn∥ = 0.

The set of asymptotic fixed points of T is denoted by F̃ (T ).

Definition 2.3. A mapping T : C → C is said to be
(1) relatively nonexpansive if F̃ (T ) = F (T ) ̸= ϕ and

ϕ(p, Tx) ≤ ϕ(p, x)

for all x ∈ C and p ∈ F (T );
(2) quasi-ϕ-nonexpansive if F (T ) ̸= ϕ and

ϕ(p, Tx) ≤ ϕ(p, x)

for all x ∈ C and p ∈ F (T );
(3) asymptotically quasi-ϕ-nonexpansive if F (T ) ̸= ϕ and there exists a se-

quence {kn} ⊂ [0,∞) with kn → 1 as n → ∞ such that

ϕ(p, Tnx) ≤ knϕ(p, x)

for all x ∈ C, p ∈ F (T ) and n ≥ 1;
(4) asymptotically quasi-ϕ-nonexpansive in the intermediate sense if F (T ) ̸= ϕ

and

lim sup
n→∞

sup
p∈F (T ),x∈C

(ϕ(p, Tnx)− ϕ(p, x)) ≤ 0.

Put

ξn = max{0, sup
p∈F (T ),x∈C

(ϕ(p, Tnx)− ϕ(p, x))}.

Remark 2.2. From the definition, it is obvious that ξn → 0 as n → ∞ and

ϕ(p, Tnx) ≤ ϕ(p, x) + ξn, ∀p ∈ F (T ), x ∈ C. (2.3)
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Remark 2.3. (1) It is easy to see that the class of quasi-ϕ-nonexpansive map-
pings contains the class of relatively nonexpansive mappings.

(2) The class of asymptotically quasi-ϕ-nonexpansive mappings is more gen-
eral than the class of relatively asymptotically nonexpansive mappings.

(3) The class of asymptotically quasi-ϕ-nonexpansive mappings in the inter-
mediate sense is a generalization of the class of asymptotically quasi-nonexpansive
mappings in the intermediate sense in the framework.

Recall that T is said to be asymptotically regular on C if for any bounded
subset K of C,

lim
n→∞

sup
x∈K

∥Tn+1x− Tnx∥ = 0.

Definition 2.4. A mapping T : C → C is said to be closed if for any sequence
{xn} ⊂ C with xn → x and Txn → y, Tx = y.

Lemma 2.5 ([4]). Let E be a reflexive, strictly convex and smooth Banach space
such that both E and E∗ have the Kadec-Klee property. Let C be a nonempty
closed and convex subset of E. Let T : C → C be a closed and asymptotically
quasi-ϕ-nonexpansive mapping in the intermediate sense. Then F (T ) is a closed
convex subset of C.

3. Main results

Theorem 3.1. Let E be a reflexive, strictly convex and smooth Banach space
such that both E and E∗ have the Kadec-Klee property. Let C be a nonempty
closed convex subset of E. Let T : C → C be a closed, asymptotically regu-
lar and asymptotically quasi-ϕ-nonexpansive mapping in the intermediate sense.
Let {αn} be a sequence in [0, 1] and {βn} be a sequence in (0, 1) satisfying the
following conditions:

(i) limn→∞ αn = 0;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Let {xn} be a sequence generated by

x1 ∈ E chosen arbitrarily,

C1 = C,

yn = J−1[αnJx1 + (1− αn)(βnJxn + (1− βn)JT
nxn)],

Cn+1 = {z ∈ Cn : ϕ(z, yn) ≤ αnϕ(z, x1) + (1− αn)ϕ(z, xn) + ξn},
xn+1 = ΠCn+1x1, ∀n ≥ 1,

(3.1)

where ξn = max{0, supp∈F (T ),x∈C(ϕ(p, T
nx) − ϕ(p, x))}, ΠCn+1 is the general-

ized projection of E onto Cn+1. If F (T ) is bounded in C, then {xn} converges
strongly to ΠF (T )x1.
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Proof. It follows from Lemma 2.2 that F (T ) is a closed convex subset of C, so
that ΠF (T )x is well defined for any x ∈ C.

We split the proof into six steps.
Step 1. We first show that Cn, n ≥ 1, is nonempty, closed and convex.
It is obvious that C1 = C is closed and convex. Suppose that Cn is closed and

convex for some n ≥ 2. For z1, z2 ∈ Cn+1, we see that z1, z2 ∈ Cn. It follows
that z = tz1 + (1− t)z2 ∈ Cn, where t ∈ (0, 1). Notice that

ϕ(z1, yn) ≤ αnϕ(z1, x1) + (1− αn)ϕ(z1, xn) + ξn,

and

ϕ(z2, yn) ≤ αnϕ(z2, x1) + (1− αn)ϕ(z2, xn) + ξn.

These are equivalent to

2αn⟨z1, Jx1⟩+ 2(1− αn)⟨z1, Jxn⟩ − 2⟨z1, Jyn⟩
≤ αn∥x1∥2 + (1− αn)∥xn∥2 − ∥yn∥2 + ξn, (3.2)

and

2αn⟨z2, Jx1⟩+ 2(1− αn)⟨z2, Jxn⟩ − 2⟨z2, Jyn⟩
≤ αn∥x1∥2 + (1− αn)∥xn∥2 − ∥yn∥2 + ξn. (3.3)

Multiplying t and 1− t on both sides of (3.2) and (3.3), respectively, we obtain
that

2αn⟨z, Jx1⟩+ 2(1− αn)⟨z, Jxn⟩ − 2⟨z, Jyn⟩
≤ αn∥x1∥2 + (1− αn)∥xn∥2 − ∥yn∥2 + ξn.

That is,

∥z∥2 − 2⟨z, Jyn⟩+ ∥yn∥2 ≤ αn(∥z∥2 − 2⟨z, Jx1⟩+ ∥x1∥2)
+ (1− αn)(∥z∥2 − 2⟨z, Jxn⟩+ ∥xn∥2) + ξn.

Therefore, we have

ϕ(z, yn) ≤ αnϕ(z, x1) + (1− αn)ϕ(z, xn) + ξn.

This implies that Cn+1 is closed and convex for all n ≥ 1.

Step 2. We show that F (T ) ⊂ Cn, ∀n ≥ 1.
For n = 1, we have F (T ) ⊂ C1 = C. Now, assume that F (T ) ⊂ Cn for some

n ≥ 2. Put wn = J−1(βnJxn+(1−βn)JT
nxn). For each x∗ ∈ F (T ), we obtain

from (2.2) and (2.3) that

ϕ(x∗, yn) = ϕ(x∗, J−1(αnJx1 + (1− αn)Jwn))

≤ αnϕ(x
∗, x1) + (1− αn)ϕ(x

∗, wn)

and

ϕ(x∗, wn) = ϕ(x∗, J−1(βnJxn + (1− βn)JT
nxn))

≤ βnϕ(x
∗, xn) + (1− βn)ϕ(x

∗, Tnxn)
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≤ βnϕ(x
∗, xn) + (1− βn)(ϕ(x

∗, xn) + ξn)

≤ ϕ(x∗, xn) + ξn.

Therefore, we have

ϕ(x∗, yn) ≤ αnϕ(x
∗, x1) + (1− αn)(ϕ(x

∗, xn) + ξn)

≤ αnϕ(x
∗, x1) + (1− αn)ϕ(x

∗, xn) + ξn.

So, x∗ ∈ Cn+1. It implies that F (T ) ⊂ Cn+1.

Step 3. We prove that {xn} is bounded and limn→∞ ϕ(xn, x1) exists.
Since xn = ΠCnx1, we have from Lemma 2.1 that

⟨xn − y, Jx1 − Jxn⟩ ≥ 0, ∀y ∈ Cn.

Again, since F (T ) ⊂ Cn, we have

⟨xn − x∗, Jx1 − Jxn⟩ ≥ 0, ∀x∗ ∈ F (T ).

It follows from Lemma 2.1 that for each u ∈ F (T ) and for each n ≥ 1,

ϕ(xn, x1) = ϕ(ΠCnx1, x1)

≤ ϕ(u, x1)− ϕ(u, xn)

≤ ϕ(u, x1).

Therefore, {ϕ(xn, x1)} is bounded. By virtue of (2.1), {xn} is also bounded.
Again, since xn = ΠCnx1, xn+1 = ΠCn+1x1 and xn+1 ∈ Cn+1 ⊂ Cn for all
n ≥ 1, we have

ϕ(xn, x1) ≤ ϕ(xn+1, x1), ∀n ≥ 1.

This implies that {ϕ(xn, x1)} is nondecreasing and bounded. Hence, limn→∞ ϕ(xn, x1)
exists.

Step 4. Next, we prove that xn → x, where x is some point in C.
Now, since {xn} is bounded and the space E is reflexive, we may assume that

there exists a subsequence {xni
} of {xn} such that xni

⇀ x. Since Cn is closed
and convex, it is easy to see that x ∈ Cn for each n ≥ 1. This implies that

ϕ(xni , x1) ≤ ϕ(x, x1), ∀ni.

On the other hand, it follows from the weak lower semicontinuity of the norm
that

ϕ(x, x1) = ∥x∥2 − 2⟨x, Jx1⟩+ ∥x1∥2

≤ lim inf
n→∞

(∥xni∥2 − 2⟨xni , Jx1⟩+ ∥x1∥2)

= lim inf
ni→∞

ϕ(xni
, x1)

≤ ϕ(x, x1),

which implies that ϕ(xni , x1) → ϕ(x, x1) as ni → ∞. Hence, ∥xni∥ → ∥x∥ as
ni → ∞. In view of the Kadec Klee property of E, we see that xni → x as ni →
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∞. If there exists another subsequence {xnj} of {xn} such that xnj → x∗ ∈ C,
we have

ϕ(x, x∗) = lim
ni,nj→∞

ϕ(xni , xnj )

= lim
ni,nj→∞

ϕ(xni ,ΠCnj
x1)

≤ lim
ni,nj→∞

[ϕ(xni , x1)− ϕ(ΠCnj
x1, x1)]

= lim
ni,nj→∞

[ϕ(xni , x1)− ϕ(xnj , x1)]

= 0,

which implies x = x∗. This shows that xn → x.

Step 5. Now we prove that x ∈ F (T ).
Since xn = ΠCnx1, xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn and limn→∞ ϕ(xn, x1)

exists, we see that

ϕ(xn+1, xn) = ϕ(xn+1,ΠCnx1)

≤ ϕ(xn+1, x1)− ϕ(ΠCnx1, x1)

= ϕ(xn+1, x1)− ϕ(xn, x1).

Hence, we have

lim
n→∞

ϕ(xn+1, xn) = 0.

Since xn+1 ∈ Cn+1, xn → x and αn → 0, it follows from (3.1) and Remark 2.2
that

ϕ(xn+1, yn) ≤ αnϕ(xn+1, x1) + (1− αn)ϕ(xn+1, xn) + ξn → 0 (3.4)

as n → ∞. This implies that

lim
n→∞

(∥xn+1∥ − ∥yn∥)2 = 0.

Therefore we obtain

lim
n→∞

∥yn∥ = ∥x∥. (3.5)

and so

lim
n→∞

∥Jyn∥ = ∥Jx∥. (3.6)

This shows that {Jyn} is bounded. Since E is reflexive, E∗ is reflexive. Without
loss of generality, we can assume that J(yn) ⇀ y ∈ E∗. In view of reflexivity of
E, we see that J(E) = E∗. Hence, there exists y ∈ E such that Jy = y. This
implies that J(yn) ⇀ Jy. And

ϕ(xn+1, yn) = ∥xn+1∥2 − 2⟨xn+1, Jyn⟩+ ∥yn∥2

= ∥xn+1∥2 − 2⟨xn+1, Jyn⟩+ ∥Jyn∥2. (3.7)
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Taking lim infn→∞ for both sides of (3.7), we have from (3.4) that

0 ≥ ∥x∥2 − 2⟨x, Jy⟩+ ∥Jy∥2

= ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2 = ϕ(x, y),

which shows that x = y and so

J(yn) ⇀ Jx.

It follows from (3.6) and the Kadec-Klee property of E∗ that J(yn) → Jx. Since
J−1 is norm-weak-continuous, we have

yn ⇀ x. (3.8)

It follows from (3.5),(3.8) and the Kadec-Klee property of E that we have

yn → x. (3.9)

On the other hand, since {xn} is bounded and T is asymptotically quasi-ϕ-
nonexapnsive in the intermediate sense, for any given p ∈ F (T ), we have from
(2.3) that

ϕ(p, Tnxn) ≤ ϕ(p, xn) + ξn, n ≥ 1.

This implies that {Tnxn} is bounded. Since

∥wn∥ = ∥J−1(βnJxn + (1− βn)JT
nxn)∥

≤ βn∥xn∥+ (1− βn)∥Tnxn∥
≤ max{∥xn∥, ∥Tnxn∥},

it implies that {wn} is also bounded. From (3.1), we have

lim
n→∞

∥Jyn − Jwn∥ = lim
n→∞

αn∥Jx1 − (βnJxn + (1− βn)JT
nxn)∥

= lim
n→∞

αn∥Jx1 − Jwn∥

= 0.

It follows from (3.9) that Jwn → Jx as n → ∞. Since J−1 is norm-weakly-
continuous, this implies that

wn ⇀ x (3.10)

as n → ∞. Note that

lim
n→∞

|∥wn∥ − ∥x∥| = lim
n→∞

|∥Jwn∥ − ∥Jx∥|

≤ lim
n→∞

∥Jwn − Jx∥

= 0.

This together with (3.10) shows that

wn → x

as n → ∞. Since xn → x, we have Jxn → Jx. Since

Jwn − Jx = βnJxn + (1− βn)JT
nxn − Jx
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= βn(Jxn − Jx) + (1− βn)(JT
nxn − Jx),

lim
n→∞

(1− βn)∥JTnx− Jx∥ ≤ lim
n→∞

∥Jwn − Jx∥+ lim
n→∞

βn∥Jxn − Jx∥

= 0. (3.11)

By condition (ii) and (3.11), we have that

lim
n→∞

∥JTnxn − Jx∥ = 0. (3.12)

Since J−1 is norm-weakly-continuous, this implies that

Tnxn ⇀ x. (3.13)

It follows from (3.12) that

lim
n→∞

|∥Tnxn∥ − ∥x∥| = lim
n→∞

|∥JTnxn∥ − ∥Jx∥|

≤ lim
n→∞

∥JTnxn − Jx∥

= 0.

This together with (3.13) and the Kadec-Klee property of E shows that

Tnxn → x

as n → ∞. Again, by the asymptotic regularity of T , we have

∥Tn+1xn − x∥ ≤ ∥Tn+1xn − Tnxn∥+ ∥Tnxn − x∥
→ 0

as n → ∞. That is, limn→∞ TTnxn = x. It follows from the closedness of T
that Tx = x, i.e., x ∈ F (T ).

Step 6. Finally, we prove that xn → x = ΠF (T )x1.
Let w = ΠF (T )x1. Since w ∈ F (T ) ⊂ Cn and xn = ΠCnx1, we have

ϕ(xn, x1) ≤ ϕ(w, x1), ∀n ≥ 1.

This implies that

ϕ(x, x1) = lim
n→∞

ϕ(xn, x1)

≤ ϕ(w, x1). (3.14)

From the definition of ΠF (T )x1, x ∈ F (T ) and (3.14), we see that x = w. This
completes the proof. �
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Remark 3.1. If we take αn = 0 for all n ∈ N, then the iterative scheme (3.1)
reduces to following scheme:

x0 ∈ E chosen arbitrarily,

C1 = C,

yn = J−1(βnJxn + (1− βn)JT
nxn)

Cn+1 = {z ∈ Cn : ϕ(z, yn) ≤ ϕ(z, xn) + ξn},
xn+1 = ΠCn+1x1, ∀n ≥ 1,

where

ξn = max{0, sup
p∈F (T ),x∈C

(ϕ(p, Tnx)− ϕ(p, x))},

which is (1.2) and an improvement to (1.1).

In the framework of Hilbert spaces, Theorem 3.1 is reduced to the following.

Corollary 3.2. Let E be a Hilbert space. Let C be a nonempty closed convex
subset of H. Let T : C → C be a closed, asymptotically regular and asymptot-
ically quasi-ϕ-nonexpansive mapping in the intermediate sense. Let {αn} be a
sequence in [0, 1] and {βn} be a sequence in (0, 1) satisfying the following condi-
tions:

(i) limn→∞ αn = 0;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Let {xn} be a sequence generated by

x1 ∈ E chosen arbitrarily,

C1 = C,

yn = αnx1 + (1− αn)(βnxn + (1− βn)T
nxn),

Cn+1 = {z ∈ Cn : ∥z − yn∥2 ≤ αn∥z − x1∥2 + (1− αn)∥z − xn∥2 + ξn},
xn+1 = PCn+1x1, ∀n ≥ 1,

where

ξn = max{0, sup
p∈F (T ),x∈C

(∥p− Tnx∥2 − ∥p− x∥2)},

PCn+1 is the metric projection from E onto Cn+1. If F (T ) is bounded in C, then
{xn} converges strongly to PF (T )x1.

Proof. . If E is a Hilbert space, then J = I (the identity mapping) and ϕ(x, y) =
∥x − y∥2. We can obtain the desired conclusion easily from Theorem 3.1. This
completes the proof.

If T is quasi-ϕ- nonexpansive, then Theorem 3.1 is reduced to the following
without involving boundedness of F (T ) and asymptotically regularity on C. �
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Corollary 3.3. Let E be a reflexive, strictly convex and smooth Banach space
such that both E and E∗ have the Kadec-Klee property. Let C be a nonempty
closed convex subset of E. Let T : C → C be a closed, quasi-ϕ-nonexpansive
mapping with F (T ) ̸= ϕ. Let {αn} be a sequence in [0, 1] and {βn} be a sequence
in (0, 1) satisfying the following conditions:

(i) limn→∞ αn = 0;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Let {xn} be a sequence generated by

x1 ∈ E chosen arbitrarily,

C1 = C.

yn = J−1(αnJx1 + (1− αn)(βnJxn + (1− βn)JTxn)),

Cn+1 = {z ∈ Cn : ϕ(z, yn) ≤ αnϕ(z, x1) + (1− αn)ϕ(z, xn)},
xn+1 = ΠCn+1x1, ∀n ≥ 1,

where ΠCn+1 is the generalized projection of E onto Cn+1. Then {xn} converges
strongly to ΠF (T )x1.

Remark 3.2. (1) By Remark 3.1, Theorem 3.1 extends Theorem 2.1 of Hao [4].
(2) Theorem 3.1 generelized Theorem 3.1 of Matsushita and Takahashi [7] in

the following respects:
(i) from the relatively nonexpansive mapping to the asymptotically quasi-

ϕ-nonexpansive mapping in the intermediate sense;
(ii) from a uniformly convex and uniformly smooth Banach space to a

reflexive, strictly convex and smooth Banach space.
(3) Corollary 3.1 generalized and improves Corollary 2.5 of Hao [4], Theorem

3.4 of Nakajo and Takahashi [8] and Theorem 2.1 of Su and Qin [9] in the
following aspects:

(i) Algorithm of Corollary 3.1 is different from algorithms in [4,8,9].
(ii) Corollary 3.1 includes Corollary 2.5 of Hao [4] as a special case.
(iii) The set Qn in [8,9] have been relaxed.

References

1. Y.I. Alber, Metric and generalized projection operators in Banach spaces: Properties and
applications, in : A. G. Kartosator (Ed.), Theory and Applications of Nonlinear Operators
of Accretive and Monotone Type, Marcel Dekker, New York, 1996, 15– 50.

2. Y.I. Alber, S. Reich, An iterative method for solving a class of nonlinear operator equations

in Banach spaces, Panamer. Math. J. 4 (1994), 39–54.
3. B. Halpern, Fixed points of nonexpending maps, Bull. Amer. Math. Soc. 73(1967), 957–961.
4. Y. Hao, Some results on a modified mann iterative scheme in a reflexive Banach space,

Fixed Point Theory Appl. 2013, Article ID 227.
5. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974),

147–150.
6. W.R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc. 4 (1953), 506–510.



Strong convergence theorems 633

7. S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive
mappings in Banach spaces, J. Approx. Theory 134 (2005), 257–266.

8. K. Nakojo and W. Takahashi, Strong convergence theorems for nonexpansive mappings

and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003), 372–379.
9. Y. Su and X. Qin, Strong convergence theorems for asymptotically nonexpansive mappings

and asymptotically nonexpansive semigroups, Fixed Point Theory Appl. 2006, Article ID
96215.

10. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

Jae Ug Jeong received M.Sc. from Busan National University and Ph.D at Gyeongsang
National University. Since 1982 he has been at Dongeui University. His research interests
include fixed point theory and variational inequality problems.

Department of Mathematics, Dongeui University, Busan 614-714, South Korea.
e-mail: jujeong@deu.ac.kr


