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STRONG CONVERGENCE OF MODIFIED ISHIKAWA
ITERATION FOR TWO RELATIVELY NONEXPANSIVE
MAPPINGS IN A BANACH SPACE

YING Liu, X1AN WANG, AND ZHEN HE

ABSTRACT. In this paper, we prove a strong convergence theorem for a
common fixed point of two relatively nonexpansive mappings in a Banach
space by using the modified Ishikawa iteration method. Our results im-
proved and extend the corresponding results announced by many others.

1. Introduction

Let E be a Banach space, E* be the dual space of E. (-,-) denotes the
duality pairing of F and E*. The function ¢ : E x E — R is defined by

¢y, x) = |lyl> — 2y, Jx) + |||,
for all x,y € E, where J is the normalized duality mapping from E to E*.
Let C be a closed convex subset of E, and let T' be a mapping from C' into
itself.We denote by F(T') the set of fixed points of T. A point p in C is said
to be an asymptotic fixed point of T[1] if C' contains a sequence {x,} which
converges weakly to p such that the strong nlirr;o (xn, — Txzp) = 0. The set of

asymptotic fixed points of T will be denoted by F(T). A mapping T from C
into itself is called nonexpansive if ||Tx — Ty|| < ||z — y| for all z,y € C. and
relatively nonexpansive [1] if F(T) = F(T) and ¢(p, Tx) < ¢(p, z) for all z € C
and p € F(T). The asymptotic behavior of a relatively nonexpansive mapping
was studied in [1-4].

Two classical iteration processes are often used to approximate a fixed point
of a nonexpansive mapping. The first one is introduced in 1953 by Mann [5]
which well-known as Mann’s iteration process and is defined as follows:

(1.1) { zg € C chosen arbitrarily,

Tpnt1 = pxp+ (1— )Tz, n>0,
where the sequence {a,,} is chosen in [0,1]. Twenty-one years later, Ishikawa
[6] enlarged and improved Mann’s iteration (1.1) to the new iteration method,
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it is often cited as Ishikawas iteration process which is defined recursively by

g € C chosen arbitrarily
Tpy1 = pTy+ (1 —apn)Tyn, n >0,

where a;, and (3, are sequences in the interval [0, 1].

Both iterations processes (1.1) and (1.2) have only weak convergence, in
general Banach space (see [7] for more details). As a matter of fact, process
(1.1) may fail to converge while process (1.2) can still converge for a Lipschitz
pseudo-contractive mapping in a Hilbert space [8].

Some attempts to modify the Mann iteration method so that strong con-
vergence is guaranteed have recently been made. Nakajo and Takahashi [9]
proposed the following modification of the Mann iteration method for a single
nonexpansive mapping 7" in a Hilbert space H:

g = xXE C,
(1.3) Cpn = {z€C:|z=yul <|lz—zall},
Qn = {z€C:{xy—2z,2—x,) >0},
Tny1 = Po,ng.z, n=0,12.

where Pk denotes the metric projection from H onto a closed convex subset K
of H. They proved that if the sequence {a,,} is bounded above from one, then
{xy} defined by (1.3) converges strongly to Pp(r)x.

Recently, Martinez-Yanes and Xu [10] has adapted Nakajo and Takahashi’s
[9] idea to modify the process (1.2) for a single nonexpansive mapping T in a
Hilbert space H :

o € C,
Yn = OQpTp + (1 - an)TZn7
(1.4) Cn = {velC:|y,— U”Z <|lzn — U”Q
+ (1= an)(lzll® = lzall® + 2(zn — 20, v))},
Qn, = {vel:{xy,—v,20—12,) >0},
Toy1 = Po,na.%o,

where Px denotes the metric projection from H onto a closed convex subset
K of H. They proved that if {o,} and {f,} are sequences in [0, 1] such that
ap < 1—0 for some § € (0,1] and 3, — 1, then the sequence {z,} generated
by (1.4) converges strongly to Pp 7).

The ideas to generalize the processes (1.3),(1.4) from Hilbert space to Ba-
nach space have recently been made. By using available properties on uniformly
convex and uniformly smooth Banach space, Matsushita and Takahashi [1] pre-
sented their ideas as the following method for a single relatively nonexpansive
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mapping 7" in a Banach space E :

o = TE C,
yn = J HanJz, + (1 —an)JTzy,),
(15) Hy, = (€0 6(zyn) < 0( )},
W, = {ze€C:{(z,—2zJx—Jz,) >0},
Tn+1 = HHHHW’LSC,RZO,LQ,...,

where a,, C [0,1),limsupa,, < 1, and Iy, qw, is the generalized projection
n—oo

from C into H,, () W,,. They proved {x,} converges strongly ITp)xo.
Qin and Su[ll]proposed the following modified Ishikawa iteration process
for a single relatively nonexpansive mapping 7" in a Banach space F :

rg € C,
Zn = J_l(ﬂn']mn+(1 _67L)']Txn)7
(1.6) Yn = J HapJr, + (1 —an)JTz,),
Cn = {veC:0(v,yn) < and(v,zn) + (1 — an)d(v,2,)},
Qn = {vel:{x,—vJag— Jz,) >0},
Tor1 = Mg, nag.To,

where o, C [0,1),limsupa, < 1, B, — 1, and Ilg, ¢, is the generalized

n—oo
projection from C into C, () Q.. They proved if T is uniformly continuous,
then {z,,} converges strongly to Il 0.
Inspired and motivated by these facts, our purpose in this paper is to de-
velop the modified Ishikawa iteration process (1.6) to two relatively nonexpan-
sive mappings.

2. Preliminaries

We denote by J : E — 2E" the normalized duality mapping from E to 2£7,
defined by

J(x):={ve E*: (v,z) = |]v]|* = ||=||*}, VzeFE.
The duality mapping J has the following properties:

(i) if E is smooth, then J is single-valued;

) if E is strictly convex, then J is one-to-one;

i) if E is reflexive, then J is surjective.

) if E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E.

Let FE be a reflexive, strictly convex, smooth Banach space and J the duality
mapping from F into E*. Then J~! is also single-valued, one-to-one, surjective,
and it is the duality mapping from E* into F.

When {z,} is a sequence in F, we denote strong convergence of {z,} to
z € E by x,, — x and weak convergence by x, — x.
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Let U = {x € E : ||z|| = 1} be the unit sphere of E. A Banach space E is
said to be strictly convex if ||¥H <1forall z,y € U and x # y. It is also said

to be uniformly convex if lim |x, —y,|| = 0 for any two sequences {z,}, {yn}
n—oo
in U and lim [|Z2F¥2 | = 1. A Banach space is said to be smooth provided
n—oo

ety e
t—0 t
exists for each z,y € U. It is also said to be uniformly smooth if the limit is
attained uniformly for x,y € U. A Banach space F is said to have the K-K
property if a sequence {z,} of E satisfying that z, — x € E and ||z, | — ||z||,
then z,, — x. It is known that if F is uniformly convex, then E has the K-K
property. Let E be a smooth Banach space. The function ¢ : E x E — R is
defined by
6(y,) = lyll? — 20y, Ja) + |2

for all x,y € E. It is obvious from the definition of the function ¢ that
(AL ([lz]l = lly)? < oy, 2) < (]l + llyl)>.
(A2) ¢(z,y) = ¢z, 2) + ¢(2,y) + 2(x — 2, Jz — Jy).
(A3) ¢(z,y) = (x, Jz = Jy) + (y — =, Jy) < [lz]|[|Jz — Tyl + |y — z[[[[y].-

Remark 2.1. From the Remark 2.1 of reference [1], we can know that if E is

a strictly convex and smooth Banach space, then for z,y € E, ¢(y,z) = 0 if
and only if z = y.

Lemma 2.1 (see [1]). Let E be a uniformly conver and smooth Banach space
and let {yn}, {zn} be two sequences of E. If ¢(yn,2n) — 0, and either {y,} or
{zn} is bounded, then y, — z, — 0.

Let C be a nonempty closed convex subset of E. Suppose that E is reflexive,
strictly convex and smooth. Then, for any x € F, there exists a unique point
o € C such that

Pz, ) = ggg Py, x).

The mapping Il : E — C defined by llgx = z( is called the generalized
projection [1, 12]. In a Hilbert space, IIc = Pc (metric projection). The
following are well-known results.

Lemma 2.2 (see [11-12]). Let C be a nonempty closed conver subset of a
smooth Banach space E and x € E. Then, xo = oz if and only if

(o —y,Jo — Jxg) > 0
forally e C.

Lemma 2.3 (see [12]). Let E be a reflexive, strictly convex and smooth Banach
space, let C' be a nonempty closed convex subset of E and let x € E. Then

oy, Hez) + ooz, z) < d(y, x)
forally e C.
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Lemma 2.4 (see [1]). Let E be a strictly convex and smooth Banach space,
let C be a closed convex subset of E, and let T be a relatively nonexpansive
mapping from C into itself. Then F(T) is closed and convex.

Lemma 2.5 (see [13]). Let E be a uniformly convex Banach space and let
r > 0. Then there exists a continuous strictly increasing convex function g :
[0,2r] — R such that g(0) = 0 and

[t + (1 = t)yl1* < tllz]* + (1 = ) [lyl> = t(1 = t)g([l = yl]),
forallz,y € B, and t € [0,1], where B, ={z € E : ||z|| <r}.

3. Main results
For any zy € C, we define the iteration process {x,} as follows:

xg € C chosen arbitrarily,
20 = loJ Y BpJzn + (1 - B,)JSz,),

(3.1) yn = J HanJr, + (1 —an)JTz,),
' Cn = {veC:¢(v,yn) < d(v,zn)},
Qn = {UEC: <$7L—U,J$Q—J$"> ZO},
Tnt1 = g, ng,%os

where {a,},{8,} satisfy: 0 < o, < 1, for all n € N(J{0} and limsupa,, <
1, 0< B, <1, and liminf3,(1—8,) > 0.

Theorem 3.1. Let E be a uniformly convexr and uniformly smooth Banach
space.Let C' be a mnonempty, closed conver subset of E. Assume that T,S
are two relatively nonexpansive mappings from C into itself such that F =
F(T)NF(S) # 0, then the sequence {x,} defined by (3.1) converges strongly
to lpxg, where Ilp is the generalized projection from E onto F.

Proof. We first show that C, and @, are closed and convex for each n €
N |J{0}. From the definition of C,, and Qy,it is obvious that C,, is closed and
Q@ is closed and convex for each n € N (J{0}. We show that C,, is convex.
Since (v, yn) < ¢(v,x,) is equivalent to

2(v, Jxn = Jyn) + llynl® = [lz.[* <0,
it follows that C), is convex. Next, we show that ' C C,, (@, for all n €

NJ{0}. Put w, = J B Jx, + (1 — B,)JSz,), we have z, = Ilcw,. Let
p € F, then, by Lemma 2.3 and the convexity of || - ||, we have

o(p,zn) < @(p,wn) = IplI* = 2(p, BuJxn + (1 — Bn)J Szp)
+||Bndxn + (1 — ﬁn)JSaan2

(3 2) < ||p||2 - 267l<pa an> - 2(1 - 6n)<p7 JSJ,‘»,L>
' + Bullznll? + (1 = Ba) || Szal?
= /6n¢(p, :L'n) + (]- - 5n)¢(pv Sl’n)
< (P xn),
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and then

o, yn) = Ipl? = 2(p, anJwn + (1 — an)JTzp)
+ lanJxn + (1 — ap)J Tz, ||?

< Hp”2 =20 (p, Jxp) — 2(1 — ) (p, JT2)
+ O‘onnHz +(1— O‘n)HTZn”2

= an(p,rn) + (1 — an)d(p, T2n)

< an¢(p7 xn) + (1 - an)¢(p7 Zn)

< é(p, ngn)

Thus, we have p € C,,. Therefore we obtain F' C C,, for each n € N (J{0}.
Using the same argument presented in the proof of [1, Theorem 3.1;pp.261-
262] we have F C C,, [\ @y for each n € N (J{0}. This implies that {z,} is well
defined. It follows from the definition of @,, and lemma 2.2 that =z, = Ilg, xo.
Using z,, = llg, 2o and lemma 2.3, we have

(,ZS(I}H 1‘0) < ¢(p7 1'0) - (rb(pa In) < (rb(pa IO)

for each p € F C Q,, for each n € N |J{0}. Therefore, {¢(xyn,z)} is bounded.
Moreover, from (A1), we have that {z,} is bounded.

Since zn,41 = I, N@.%0 € @, and lemma 2.3, we have ¢(z,,70) <
d(Tnt1,20) for each n € N J{0}. Therefore, {¢(zn,zo)} is nondecreasing. So
there exists the limit of ¢(x,,zg). From the lemma 2.3, we have

(Tn+1,Tn) < G(Tns1,T0) — A(@n, T0)
for each n € N |J{0}. This implies that lim ¢(zp41,2,) = 0. Since z,41 =
n—oo
e, N, o € Cy, from the definition of C),, we also have
¢(xn+1a yn) < ¢(In+17 mn)
for each n € N|J{0}. Tending n — oo, we have lim ¢(x,41,y,) = 0. Using
n—oo
the lemma 2.1, we obtain
lim [|zy41 =yl = lm [[2p41 — 20l = 0.
n— o0 n—oo
From [[2n — all < 20 — @ns1ll + [2ns1 - yall, we have
(3.3) [2n = ynll = 0, (n — o0).
Since J is uniformly norm-to-norm continuous on bounded sets, we have
(34) lim [[Jzpy1 — Jys|| = lim |21 — Ja,|| = lim || Jz, — Jy,| = 0.
n—oo n—oo n—oo

On the other hand, we have, for each n € N (J{0},

lon (Jzpi1 — Jzpn) + (1 — ap) (Jxnsr — JTz)|]

lJTni1 — Jynll =
> (A —an)lJene1 — JTz0|| — anl|Jzn — JTpg1]].

and hence

||J£L'n+1 — JTZn” S

I—ao ([Jzns1 = Jynll + [[Jzn — Jzpga ).
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From (3.4) and limsup «;, < 1, we obtain
n—oo

|Jxnt1 — JTzn]| — 0, (n— 00).

Since J ! is also uniformly norm-to-norm continuous on bounded sets, we have

nh—{%o |Xnt1 — Tznl| = 0. From ||z, — Tzn|| < |20 — Tng1l] + |2nt1 — Tznll, we
have
(3.5) lim ||z, — Tz,| = 0.

n—oo

Next, we show that ||z, — Sz,|| — 0 and ||z, — Tz,|| — 0. Since {x,} is
bounded, ¢(p, Sx,) < &¢(p,xn), where p € F, we also obtain {Jz,},{JSz,}
are bounded, then there exists > 0 such that {Jz,}, {JSz,} C B,. Therefore
lemma 2.5 is applicable and we observe that

o, 2n,) < d(p,wn)
56 < Dl 2p, Bu T+ (1 Bu) IS ) + Bl
' (1= Bu)lISznll® = Ba(1 = Bu)g([| Tz — TSz, ])
< 9(p,wn) = Bu(l = Br)g(||[Jxn — JSxn|]),
and hence

(3.7) (P, yn) < 00, 2n) — (1 — ) Bn(1 = Br)g(||[Jn — JSz0]]).
That is

(3.8) (1= an)Bn(l = Bu)g(| Jzn — JSnll) < ¢(p,2n) — A(P, Yn)-
From (3.3),(3.4) and
O(pxn) = 0Py yn) = 200 Jyn — Jan) + lzall® = [lyn?
= 2(p, Jyn — Jxn) + (|2l + [[yall) Uzl = [yall)-
we have
o(p, xn) — d(p,yn) — 0, (0 — 00).
By limsup a,, < 1’hnnii£f Bn(1—B,) >0, and (3.8), we have

n—oo
g(|Jzn, — JSxy||) — 0.
From the properties of the function g, we obtain lim |Jx, —JSz,| = 0. Since
n—oo

J~1 is also uniformly norm-to-norm continuous on bounded sets, we obtain

(3.9 lim |z, — Sz,| = 0.
Since ||Jw, — Jz,|| = (1 — Bp)||JSxn — Jx,|| — 0 as n — oo, therefore,

lwn, — 2n|| — 0 as n — oco. By (A3), we have ¢(zp,wn) — 0, as n — oo. Since
O (xn,2n) = O, Howy) < ¢(zn,wn), then, we get lim ¢(z,,z,) = 0. By
Lemma 2.1, we have

(3.10) lim |z, — z,|| = 0.

n—oo
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Since ||zn — Tznll < ||2n — @n|| + |2n — T2n]|, from (3.10) and (3.5), we have
(3.11) lim ||z, — Tz,| = 0.

Therefore, from (3.10), if {z,, } is a subsequence of {x,,} such that z,, — & €
C, then z,, — &. From (3.9),(3.11) and the definition of relatively nonexpansive
mapping, we have & € F.

Finally, we show that z,, — Ilpzg. Let w = [Ipxg. For any n € N, from
i1 =, no,z0 and w € F C Cy, (| Qp, we have

¢(Tnt1,m0) < d(w, o).
On the other hand, from weakly lower semicontinuity of the norm, we have

(2, z0) 2] — 2(&, Jxo) + [|zo|?

IA I

lin inf (|, | = 24, o) + 0]
= likminf &(xn,,, o)
< limsup ¢(zy, , o)
k—oo
< ¢(w7I0)'

From the definition of IIgxg, we obtain £ = w and hence, klim d(Tn,,To) =
—00
¢(&,x0). So, we have klim |zn, |l = |Z||. Using the K-K property of E, we
— 00

obtain z,, — Hpxg. Since x,, is an arbitrary convergent subsequence of {x,, },
we can conclude that {z,} converges strongly to Ilzpxg. O

Note that 3, = % - %, an example of the sequence {f,}.
If S = T, then we obtain the following modified Ishikawa iteration for a
single relatively nonexpansive mapping.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach
space. Let C be a nonempty, closed convex subset of E. Assume that T is a
relatively nonexpansive mapping from C into itself such that F = F(T) # 0,
then the sequence {x,} generated by

rg € C chosen arbitrarily,

2n = e Y BuJo, + (1 —3,)JTx,)

yn = J HanJz, + (1 —an)JTz,),

Cn = {welC:d(v,yn) < d(v, )},

Q. = {vel:{x,—v,Jxg— Jz,) >0},
Tny1 = g, no.To-

where {an},{0n} satisfy: 0 < ay, < 1, for all n € N|J{0} and limsup o, <
n—oo

1, 0< B, <1, andliminf 5,(1 — G,) > 0,

converges strongly to Il pxg.

Remark 3.1. Corollary 3.2 in this paper removes the uniformly continuity of
the relatively nonexpansive mapping T in the reference [11].
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If S = I, then we obtain the following result:

Corollary 3.3. (Matsushita and Takahashi [1, Theorem 3.1])Let E be a uni-
formly convex and uniformly smooth Banach space, let C be a nonempty closed
convex subset of E, let T be a relatively nonexpansive mapping from C into

its

elf, and let {an} be sequence of real numbers such that 0 < a,, < 1 and

limsupa,, < 1. If F(T) is nonempty, then the sequence {x,} generated by

n— 00

(1.

5) converges strongly to Ppryx. where Ppery = Ilpr) is the generalized

projection from C onto F(T).
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