• Title/Summary/Keyword: regressive model

Search Result 225, Processing Time 0.019 seconds

Illumination Robust Face Recognition using Ridge Regressive Bilinear Models (Ridge Regressive Bilinear Model을 이용한 조명 변화에 강인한 얼굴 인식)

  • Shin, Dong-Su;Kim, Dai-Jin;Bang, Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • The performance of face recognition is greatly affected by the illumination effect because intra-person variation under different lighting conditions can be much bigger than the inter-person variation. In this paper, we propose an illumination robust face recognition by separating identity factor and illumination factor using the symmetric bilinear models. The translation procedure in the bilinear model requires a repetitive computation of matrix inverse operation to reach the identity and illumination factors. Sometimes, this computation may result in a nonconvergent case when the observation has an noisy information. To alleviate this situation, we suggest a ridge regressive bilinear model that combines the ridge regression into the bilinear model. This combination provides some advantages: it makes the bilinear model more stable by shrinking the range of identity and illumination factors appropriately, and it improves the recognition performance by reducing the insignificant factors effectively. Experiment results show that the ridge regressive bilinear model outperforms significantly other existing methods such as the eigenface, quotient image, and the bilinear model in terms of the recognition rate under a variety of illuminations.

A Study of Estimation Method for Auto-Regressive Model with Non-Normal Error and Its Prediction Accuracy (비정규 오차를 고려한 자기회귀모형의 추정법 및 예측성능에 관한 연구)

  • Lim, Bo Mi;Park, Cheong-Sool;Kim, Jun Seok;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.109-118
    • /
    • 2013
  • We propose a method for estimating coefficients of AR (autoregressive) model which named MLPAR (Maximum Likelihood of Pearson system for Auto-Regressive model). In the present method for estimating coefficients of AR model, there is an assumption that residual or error term of the model follows the normal distribution. In common cases, we can observe that the error of AR model does not follow the normal distribution. So the normal assumption will cause decreasing prediction accuracy of AR model. In the paper, we propose the MLPAR which does not assume the normal distribution of error term. The MLPAR estimates coefficients of auto-regressive model and distribution moments of residual by using pearson distribution system and maximum likelihood estimation. Comparing proposed method to auto-regressive model, results are shown to verify improved performance of the MLPAR in terms of prediction accuracy.

Nonlinear System Identification; Comparison of the Traditional and the Neural Networks Approaches (비선형 시스템규명; 신경회로망과 기존방법의 비교)

  • Chong, Kil-To
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.157-165
    • /
    • 1995
  • In this paper the comparison between the neural networks and traditional approaches as nonlinear system identification methods are considered. Two model structures of neural networks are the state space model and the input output model neural networks. The traditional methods are the AutoRegressive eXogeneous Input model and the Nonlinear AutoRegressive eXogeneous Input model. Computer simulation for an analytic dynamic model of a single input single output nonlinear system has been done for all the chosen models. Model validation for the obtained models also has been done with testing inputs of the sinusoidal, ramp and the noise ramp.

  • PDF

Identification of dynamic characteristics of structures using vector backward auto-regressive model

  • Hung, Chen-Far;Ko, Wen-Jiunn;Peng, Yen-Tun
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.299-314
    • /
    • 2003
  • This investigation presents an efficient method for identifying modal characteristics from the measured displacement, velocity and acceleration signals of multiple channels on structural systems. A Vector Backward Auto-Regressive model (VBAR) that describes the relationship between the output information in different time steps is used to establish a backward state equation. Generally, the accuracy of the identified dynamic characteristics can be improved by increasing the order of the Auto-Regressive model (AR) in cases of measurement of data under noisy circumstances. However, a higher-order AR model also induces more numerical modes, only some of which are the system modes. The proposed VBAR model provides a clear characteristic boundary to separate the system modes from the spurious modes. A numerical example of a lumped-mass model with three DOFs was established to verify the applicability and effectiveness of the proposed method. Finally, an offshore platform model was experimentally employed as an application case to confirm the proposed VBAR method can be applied to real-world structures.

Side Information Extrapolation Using Motion-aligned Auto Regressive Model for Compressed Sensing based Wyner-Ziv Codec

  • Li, Ran;Gan, Zongliang;Cui, Ziguan;Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.366-385
    • /
    • 2013
  • In this paper, we propose a compressed sensing (CS) based Wyner-Ziv (WZ) codec using motion-aligned auto regressive model (MAAR) based side information (SI) extrapolation to improve the compression performance of low-delay distributed video coding (DVC). In the CS based WZ codec, the WZ frame is divided into small blocks and CS measurements of each block are acquired at the encoder, and a specific CS reconstruction algorithm is proposed to correct errors in the SI using CS measurements at the decoder. In order to generate high quality SI, a MAAR model is introduced to improve the inaccurate motion field in auto regressive (AR) model, and the Tikhonov regularization on MAAR coefficients and overlapped block based interpolation are performed to reduce block effects and errors from over-fitting. Simulation experiments show that our proposed CS based WZ codec associated with MAAR based SI generation achieves better results compared to other SI extrapolation methods.

Comparison of the traditional and the neural networks approaches

  • Chong, Kil-To;Parlos, Alexander-G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.134-139
    • /
    • 1994
  • In this paper the comparison between the neural networks and traditional approaches as system identification method are considered. Two model structures of neural networks are the state space model and the input output model neural networks. The traditional methods are the AutoRegressive eXogeneous Input model and the Nonlinear AutoRegressive eXogeneous Input model. The examples considered do not represent any physical system, no a priori knowledge concerning their structure has been used in the identification process. Testing inputs for comparison are the sinusoidal, ramp and the noise ramp.

  • PDF

Spatio-temporal models for generating a map of high resolution NO2 level

  • Yoon, Sanghoo;Kim, Mingyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.803-814
    • /
    • 2016
  • Recent times have seen an exponential increase in the amount of spatial data, which is in many cases associated with temporal data. Recent advances in computer technology and computation of hierarchical Bayesian models have enabled to analyze complex spatio-temporal data. Our work aims at modeling data of daily average nitrogen dioxide (NO2) levels obtained from 25 air monitoring sites in Seoul between 2003 and 2010. We considered an independent Gaussian process model and an auto-regressive model and carried out estimation within a hierarchical Bayesian framework with Markov chain Monte Carlo techniques. A Gaussian predictive process approximation has shown the better prediction performance rather than a Hierarchical auto-regressive model for the illustrative NO2 concentration levels at any unmonitored location.

The Longitudinal Causal Relationship between School Life Adjustment and Life Satisfaction Among Adolescents: The Application of Auto-Regressive Cross-Lagged Model

  • Kim, Kyung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.181-188
    • /
    • 2021
  • The purpose of the current study was to investigate the causal relationship between school life adjustment and life satisfaction among adolescents through longitudinal panel data. The current study analyzed the 1st through 7th wave data in the 4th grade panel of elementary school from the Korea Children and Youth Panel Survey (KCYPS). The research model was tested using auto-regressive cross-lagged model. The major results were as follows. First, adolescents' school life adjustment had a positive auto-regressive effect. Second, adolescents' life satisfaction had a positive auto-regressive effect. Third, adolescents' school life adjustment was a causal predictor of life satisfaction, but not vice versa. Finally, implications in terms of enhancing adolescents' school life adjustment and life satisfaction were also discussed.

Degradation Prediction and Analysis of Lithium-ion Battery using the S-ARIMA Model with Seasonality based on Time Series Models (시계열 모델 기반의 계절성에 특화된 S-ARIMA 모델을 사용한 리튬이온 배터리의 노화 예측 및 분석)

  • Kim, Seungwoo;Lee, Pyeong-Yeon;Kwon, Sanguk;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.316-324
    • /
    • 2022
  • This paper uses seasonal auto-regressive integrated moving average (S-ARIMA), which is efficient in seasonality between time-series models, to predict the degradation tendency for lithium-ion batteries and study a method for improving the predictive performance. The proposed method analyzes the degradation tendency and extracted factors through an electrical characteristic experiment of lithium-ion batteries, and verifies whether time-series data are suitable for the S-ARIMA model through several statistical analysis techniques. Finally, prediction of battery aging is performed through S-ARIMA, and performance of the model is verified through error comparison of predictions through mean absolute error.

Development of the Autoregressive and Cross-Regressive Model for Groundwater Level Prediction at Muan Coastal Aquifer in Korea (전남 무안 해안 대수층에서의 지하수위 예측을 위한 자기교차회귀모형 구축)

  • Kim, Hyun Jung;Yeo, In Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.23-30
    • /
    • 2014
  • Coastal aquifer in Muan, Jeonnam, has experienced heavy seawater intrusion caused by the extraction of a substantial amount of groundwater for the agricultural purpose throughout the year. It was observed that groundwater level dropped below sea level due to heavy pumping during a dry season, which could accelerate seawater intrusion. Therefore, water level needs to be monitored and managed to prevent further seawater intrusion. The purpose of this study is to develop the autoregressive-cross-regressive (ARCR) models that can predict the present or future groundwater level using its own previous values and pumping events. The ARCR model with pumping and water level data of the proceeding five hours (i.e., the model order of five) predicted groundwater level better than that of the model orders of ten and twenty. This was contrary to expectation that higher orders do increase the coefficient of determination ($R^2$) as a measure of the model's goodness. It was found that the ARCR model with order five was found to make a good prediction of next 48 hour groundwater levels after the start of pumping with $R^2$ higher than 0.9.