References
- Akaike, H. (1969), Power spectrum estimation through autoregressive model fitting, Annals of the institute of statistical mathematics, 21, 407-419. https://doi.org/10.1007/BF02532269
- Akaike, H. (1974), A New Look at the Statistical Model Identification, IEEE Transactions on automatic control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705
- Aldrich, J. (1997), R. A. Fisher and the making of Maximum Likelihood 1912 -1922, Statistical Science, 12(3), 162-176. https://doi.org/10.1214/ss/1030037906
- Bowerman, B. L., O'Connellm R., and Koehler, A. (2005), Forecasting Time Series and Regression, 4th edition, Thomson Brooks/Cole, CA, USA.
- Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis : Forecasting and Control, 3rd edition, Prentice-Hall, NJ, USA.
- Elderton, W. P. and Johnson, N. L. (2009), Systems of frequency curves, Cambridge University Press, NY, USA.
- Endo, H. and Randall R. B. (2007), Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter, Mechanical Systems and Signal Processing, 21(2), 906-919. https://doi.org/10.1016/j.ymssp.2006.02.005
- Gay, D. M. (1983), Algorithm 611. Subroutines for Unconstrained Minimization Using a Model.Trust, ACM Transcations on Mathematical Software, 9(4), 503-524. https://doi.org/10.1145/356056.356066
- Gay, D. M. (1990), Usage Summary for Selected Optimization Routines, Computing Sicience Technical Report, AT&T Bell Laboratories, NJ, USA.
- Last, M., Klein, Y., and Kandel, A. (2001), Knowledge Discovery in Time Series Databases, IEEE Transactions on systems, Man, and cybernetices- part B : cybernetics, 31(1), 160-169. https://doi.org/10.1109/3477.907576
- Nagahara, Y. (2000), Non-Gaussian Filter and Smoother Based on the Pearson Distribution System, Journal of Time Series Analysis, 24(6), 721-738.
- Nagahara, Y. (2004), A method of simulating multivariate nonnormal distributions by the Pearson distribution system and estimation, Computational Statistics and Data Analysis, 47(1), 1-29. https://doi.org/10.1016/j.csda.2003.10.008
- Pankratz, A. (2008), Forecasting with Univariate Box-Jenkins Models : Concepts and Cases, John wiley and sons, NY, USA.
- Parrish, R. S. (1983), On an integrated approach to member selection and parameter estimation for Pearson distributions, Computational Statistics and Data Analysis, 1, 239-255. https://doi.org/10.1016/0167-9473(83)90098-1
- Pearson, K. (1895), Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material, Philosophical Transactions of the Royal Society of London A, 186, 343-414. https://doi.org/10.1098/rsta.1895.0010
- Pearson, K. (1916), Mathematical Contributions to the Theory of Evolution. XIX. Second Supplement to a Memoiron Skew Variation, Philosophical Transactions of the Royal Society of London, Series A, Containing Papersof a Mathematical or Physical Character, 216, 429-457. https://doi.org/10.1098/rsta.1916.0009
- Rydberg, T. H. (2000), Realistic Statistical Modelling of Financial Data, International Statistical Review, 68(3), 233-258. https://doi.org/10.1111/j.1751-5823.2000.tb00329.x
- Sethi, S. and Sorger G. (1991), A Theory of Rolling Horizon Decision Making, Annuals of Operations Research, 29, 387-416 https://doi.org/10.1007/BF02283607
- Walpole, R. E. Myers, R. H. Myers, S. L., and Ye, K. (2006), Probability and Statistics for engineerings and scientists, 9 edition, Prentice Hall, NJ, USA.