• Title/Summary/Keyword: recurrent manifolds

Search Result 32, Processing Time 0.016 seconds

INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS ADMITTING CERTAIN CONDITIONS

  • Eyasmin, Sabina;Baishya, Kanak Kanti
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.829-841
    • /
    • 2020
  • The object of the present paper is to study the invariant submanifolds of (LCS)n-manifolds. We study generalized quasi-conformally semi-parallel and 2-semiparallel invariant submanifolds of (LCS)n-manifolds and showed their existence by a non-trivial example. Among other it is shown that an invariant submanifold of a (LCS)n-manifold is totally geodesic if the second fundamental form is any one of (i) symmetric, (ii) recurrent, (iii) pseudo symmetric, (iv) almost pseudo symmetric and (v) weakly pseudo symmetric.

On Generalized 𝜙-recurrent Kenmotsu Manifolds with respect to Quarter-symmetric Metric Connection

  • Hui, Shyamal Kumar;Lemence, Richard Santiago
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.347-359
    • /
    • 2018
  • A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.

𝒵 Tensor on N(k)-Quasi-Einstein Manifolds

  • Mallick, Sahanous;De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.979-991
    • /
    • 2016
  • The object of the present paper is to study N(k)-quasi-Einstein manifolds. We study an N(k)-quasi-Einstein manifold satisfying the curvature conditions $R({\xi},X){\cdot}Z=0$, $Z(X,{\xi}){\cdot}R=0$, and $P({\xi},X){\cdot}Z=0$, where R, P and Z denote the Riemannian curvature tensor, the projective curvature tensor and Z tensor respectively. Next we prove that the curvature condition $C{\cdot}Z=0$ holds in an N(k)-quasi-Einstein manifold, where C is the conformal curvature tensor. We also study Z-recurrent N(k)-quasi-Einstein manifolds. Finally, we construct an example of an N(k)-quasi-Einstein manifold and mention some physical examples.

Conformally Flat Totally Umbilical Submanifolds in Some Semi-Riemannian Manifolds

  • Ewert-Krzemieniewski, Stanislaw
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.183-194
    • /
    • 2008
  • We prove that totally umbilical submanifold M of an extended quasi-recurren manifold is also extended quasi-recurrent. If, moreover, M is conformally flat then, locally, M is isometric to the manifold with known metric. Some curvature properties of such submanifold are investigated. Making use of these results we shall prove the existence of totally umbilical submanifold being pseudosymmetric in the sense of Ryszard Deszcz and satisfying some other curvature conditions.

ON GENERALIZED W3 RECURRENT RIEMANNIAN MANIFOLDS

  • Mohabbat Ali;Quddus Khan;Aziz Ullah Khan;Mohd Vasiulla
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.325-339
    • /
    • 2023
  • The object of the present work is to study a generalized W3 recurrent manifold. We obtain a necessary and sufficient condition for the scalar curvature to be constant in such a manifold. Also, sufficient condition for generalized W3 recurrent manifold to be special quasi-Einstein manifold are given. Ricci symmetric and decomposable generalized W3 recurrent manifold are studied. Finally, the existence of such a manifold is ensured by a non-trivial example.

Chain Recurrences on Conservative Dynamics

  • Choy, Jaeyoo;Chu, Hahng-Yun
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.165-171
    • /
    • 2014
  • Let M be a manifold with a volume form ${\omega}$ and $f:M{\rightarrow}M$ be a diffeomorphism of class 𝒞$^1$ that preserves ${\omega}$. We prove that if M is almost bounded for the diffeomorphism f, then M is chain recurrent. Moreover, we get that Lagrange stable volume-preserving manifolds are also chain recurrent.

ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS WITH RESPECT TO SEMI-SYMMETRIC METRIC CONNECTION

  • Pahan, Sampa
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.235-251
    • /
    • 2021
  • The aim of the present paper is to study 3-dimensional trans-Sasakian manifold with respect to semi-symmetric metric connection. Firstly, we prove that extended generalized M-projective 𝜙-recurrent 3-dimensional trans-Sasakian manifold with respect to semi-symmetric metric connection is an 𝜂-Einstein manifold with respect to Levi-Civita connection under some certain conditions. Later we study some curvature properties of 3-dimensional trans-Sasakian manifold admitting the above connection.

On Generalized Ricci Recurrent Spacetimes

  • Dey, Chiranjib
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.571-584
    • /
    • 2020
  • The object of the present paper is to characterize generalized Ricci recurrent (GR4) spacetimes. Among others things, it is proved that a conformally flat GR4 spacetime is a perfect fluid spacetime. We also prove that a GR4 spacetime with a Codazzi type Ricci tensor is a generalized Robertson Walker spacetime with Einstein fiber. We further show that in a GR4 spacetime with constant scalar curvature the energy momentum tensor is semisymmetric. Further, we obtain several corollaries. Finally, we cite some examples which are sufficient to demonstrate that the GR4 spacetime is non-empty and a GR4 spacetime is not a trivial case.