• Title/Summary/Keyword: radius of convexity

Search Result 23, Processing Time 0.02 seconds

GEOMETRIC PROPERTIES ON (j, k)-SYMMETRIC FUNCTIONS RELATED TO STARLIKE AND CONVEX FUNCTION

  • Gochhayat, Priyabrat;Prajapati, Anuja
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.455-472
    • /
    • 2022
  • For j = 0, 1, 2,…, k - 1; k ≥ 2; and - 1 ≤ B < A ≤ 1, we have introduced the functions classes denoted by ST[j,k](A, B) and K[j,k](A, B), respectively, called the generalized (j, k)-symmetric starlike and convex functions. We first proved the sharp bounds on |f(z)| and |f'(z)|. Various radii related problems, such as radius of (j, k)-symmetric starlikeness, convexity, strongly starlikeness and parabolic starlikeness are determined. The quantity |a23 - a5|, which provide the initial bound on Zalcman functional is obtained for the functions in the family ST[j,k]. Furthermore, the sharp pre-Schwarzian norm is also established for the case when f is a member of K[j,k](α) for all 0 ≤ α < 1.

RADII PROBLEMS FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS

  • Prajapati, Anuja
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1031-1052
    • /
    • 2020
  • In this paper our aim is to find various radii problems of the generalized Mittag-Leffler function for three different kinds of normalization by using their Hadamard factorization in such a way that the resulting functions are analytic. The basic tool of this study is the Mittag-Leffler function in series. Also we have shown that the obtained radii are the smallest positive roots of some functional equations.

RADIUS OF FULLY STARLIKENESS AND FULLY CONVEXITY OF HARMONIC LINEAR DIFFERENTIAL OPERATOR

  • Liu, ZhiHong;Ponnusamy, Saminathan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.819-835
    • /
    • 2018
  • Let $f=h+{\bar{g}}$ be a normalized harmonic mapping in the unit disk $\mathbb{D}$. In this paper, we obtain the sharp radius of univalence, fully starlikeness and fully convexity of the harmonic linear differential operators $D^{\epsilon}{_f}=zf_z-{\epsilon}{\bar{z}}f_{\bar{z}}({\mid}{\epsilon}{\mid}=1)$ and $F_{\lambda}(z)=(1-{\lambda)f+{\lambda}D^{\epsilon}{_f}(0{\leq}{\lambda}{\leq}1)$ when the coefficients of h and g satisfy harmonic Bieberbach coefficients conjecture conditions. Similar problems are also solved when the coefficients of h and g satisfy the corresponding necessary conditions of the harmonic convex function $f=h+{\bar{g}}$. All results are sharp. Some of the results are motivated by the work of Kalaj et al. [8].

ON NUMERICAL RANGE AND NUMERICAL RADIUS OF CONVEX FUNCTION OPERATORS

  • Zaiz, Khaoula;Mansour, Abdelouahab
    • Korean Journal of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.879-898
    • /
    • 2019
  • In this paper we prove some interesting inclusions concerning the numerical range of some operators and the numerical range of theirs ranges with a convex function. Further, we prove some inequalities for the numerical radius. These inclusions and inequalities are based on some classical convexity inequalities for non-negative real numbers and some operator inequalities.

On a Class of Analytic Functions Related to the Starlike Functions

  • Gao, Chunyi;Zhou, Shiqiong
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.123-130
    • /
    • 2005
  • In this paper we discuss a class of analytic functions related to the starlike functions in the unit disk. We prove that this class belongs to the class of close-to-convex functions, we obtain the sharp coefficient upper bounds and distortion theorem of this class, we also get the convexity radius of this class.

  • PDF

A NEW SUBCLASS OF MEROMORPHIC FUNCTIONS DEFINED BY HILBERT SPACE OPERATOR

  • AKGUL, Arzu
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.495-506
    • /
    • 2016
  • In this paper, we introduce and investigate a new subclass of meromorphic functions associated with a certain integral operator on Hilbert space. For this class, we obtain several properties like the coefficient inequality, extreme points, radii of close-to-convexity, starlikeness and meromorphically convexity and integral transformation. Further, it is shown that this class is closed under convex linear combination.