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RADIUS ESTIMATES OF CERTAIN ANALYTIC FUNCTIONS

Sushil Kumar, Pratima Rai, and Asena Çetinkaya*

Abstract. Numerical techniques are used to determine the radius of

convexity of the starlike functions related to cardioid shaped bounded
domain. In addition, radius constants of certain starlikeness associated

with right half plane of various starlike functions are computed.

1. Introduction

We first recall the basic definitions in univalent function theory. Let Dr :=
{z ∈ C : |z| < r} denote an open disk. In particular, D1 = D. Let A denote
the class of all analytic functions f in D normalized by the conditions f(0) =
0 = f ′(0) − 1. Let S be the subclass of A containing univalent functions. The
classes S∗ and K have following analytical description:

S∗ :=

{
f ∈ S : ℜzf ′(z)

f(z)
> 0, z ∈ D

}
,

and

K :=

{
f ∈ S : 1 + ℜzf ′′(z)

f ′(z)
> 0, z ∈ D

}
.

These classes contain starlike and convex functions, respectively. Let P be
a property and M be a set of functions. Then, the real number RP (M) =
sup{r > 0 : f has the propertyP in the diskDr, ∀ f ∈ M} is radius of prop-
erty for the set M. If there exists F0 ∈ M such that F0 has the property P
in DRP

, then sharpness follows for the function F0 (see [6]). Therefore, the ra-
dius estimates related to convexity and starlikeness associated with the class A
are given by RK(A) = sup{r > 0 : f(Dr) is convex domain ∀ f ∈ A, z ∈ D}
and RS∗(A) = sup{r > 0 : f(Dr) is starlike domain ∀ f ∈ A, z ∈ D}, respec-

tively. For the class S, the best possible radius of convexity RK(S) is 2−
√

3 due
to Nevanlinna [17] and radius of starlikeness RS∗(S) = tanh π

4 ≈ 0.65579 due
to Grunsky [8] which are the oldest results in the univalent function theory.
In 2009, Sokó l [21] determined certain radii results for a class of lemniscate
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Bernoulli functions. Prajapati et al. [18] discussed starlikeness, convexity,
close-to-convexity of order α for Mittag-Leffler functions. Recently, Bohra and
Ravichandran [2] computed some radius constant for certain special functions.
Over the years, several authors examined radius estimates for several subclasses
of analytic functions. For more details, we refer to [1, 11].

For the functions f, g ∈ A, the function f is subordinate to the function
g, symbolized by f ≺ g, if there exists a function w satisfying the condition
w(0) = 0 such that f = g ◦ w. If the function g is univalent, for subor-
dination of f and g, the equivalent condition is given as: f(0) = g(0) and
f(D) ⊂ g(D). Using subordination, Ma and Minda [14] studied the growth,
covering and distortion theorem of the unified class S∗(φ) consisting the func-
tions f satisfying zf ′(z)/f(z) ≺ φ(z), z ∈ D where φ is the analytic function
satisfy inequality ℜ(φ(z)) > 0. This class contains various subclasses of star-
like functions. For instance, the class S∗[A, B] := S∗((1 + Az)/(1 + Bz)) with
−1 ≤ B < A ≤ 1 consisting of Janowski starlike functions [9]. The class
S∗
L := S∗(

√
1 + z) is initially introduced and studied by Sokó l and Stankiewicz

[22], and it is a collection of functions f ∈ A associated with a special type
of Cassinian Curve lemniscate of Bernoulli. In 2015, Mendiratta et al. [15, 16]

introduced the classes S∗
RL := S∗(φRL), where φRL(z) =

√
2 − (

√
2 − 1)((1 −

z)/(1 + (2
√

2 − 2)z))1/2 and S∗
e := S∗(ez), and determined the S∗

RL and S∗
e -

radii for certain classes. In [12, 20], authors discussed the geometric proper-

ties of the classes S∗
R := S∗(φ0(z) = (k2 + z2)/k(k − z)), k =

√
2 + 1 and

S∗
C := S∗(φc(z) = (3 + 4z + 2z2)/3), respectively. Note that the functions

φ0 and φc map the unit disk D into cardiod shaped bounded regions in the
right half plane which is a type of cycloidal curves. Raina and Sokó l [19] dis-

cussed the coefficient estimates of the class S∗
q := S∗(φq(z) = z +

√
1 + z2).

The class BS∗(α) := S∗(Gα(z) = 1 + z/(1 − αz2)), where α ∈ [0, 1) is related
to the Booth lemniscate which is a special type of the Persian curve, intro-
duced by Kargar et al. [10]. In 2019, Goel and Kumar [7] obtained several
radius estimates, coefficient bounds, structural formula, growth theorem, dis-
tortion theorem and inclusion relations for the class SG∗ := S∗(G(z)), where
G(z) = 2/(1 + e−z) is a modified sigmoid function. Recently, Cho et al. [5]
introduced S∗

s := S∗(φs(z) = 1 + sin z) and discussed the sin-starlikeness for
the class of several starlike functions.

In view of above discussed work, this manuscript studies the radius of con-
vexity for the functions belonging to the class S∗

R by using numerical techniques
like bisection, secant method etc. Next result provides S∗

B-radius constants for
the functions belonging to classes S∗

L, S∗
e , S∗

s , S∗
RL, BS∗(α), S∗

C , S∗
R and S∗

q .
Further, the S∗

B , S∗
R, S∗

L, S∗
RL, BS∗(α), S∗

e , S∗
s , SG∗-starlikeness for the class of

functions associated with Nephroid are computed. Last result yields BS∗(α)-
starlikeness for the classes S∗

C , S∗
R, S∗

L and S∗
q .
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2. Main Results

In the first result, the radius of convexity of the class S∗
R has been discussed.

Theorem 2.1. Let k =
√

2+1 and the function f ∈ S∗
R. Then, the function

f maps the disk |z| < rR ≈ 0.966372 onto convex region in the right half plane,
where rR is the unique real root of the polynomial

(1) k3 + (1 − k)kr −
(
k3 + k + 3

)
r2 +

(
k2 + 1

)
r3 + kr4 − r5.

Proof. We have f ∈ S∗
R, then there exists a Schwarz function w satisfying

w(0) = 0, |w(z)| ≤ |z| = r such that

(2)
zf ′(z)

f(z)
=

k2 + (w(z))2

k(k − w(z))
.

On differentiation of equation (2), we get

1 +
zf ′′(z)

f ′(z)
=

k2 + w2(z)

k2 − kw(z)
+

(
2w(z)

k2 + w2(z)
+

1

k − w(z)

)
zw′(z).

Therefore,

1 + ℜzf ′′(z)

f ′(z)
≥ℜ

(
k2 + w2(z)

k2 − kw(z)

)
−
∣∣∣∣ 2w(z)

k2 + w2(z)
+

1

k − w(z)

∣∣∣∣× |zw′(z)|.

Using following well-known inequality related to the Schwarz function,

|w′(z)| ≤ 1 − |w(z)|2

1 − |z|2
,

we have

1 + ℜzf ′′(z)

f ′(z)
≥ k2 − r2

k2 + kr
−
(

2r

k2 − r2
− 1

k − r

)
r(1 − |w(z)|2)

1 − |z|2

≥ k − r

k
− 2r2

(k2 − r2)(1 − r2)
− r

(k − r)(1 − r2)

≥ k − r

k
− 3r2 − rk

(k2 − r2)(1 − r2)

=
k3 + (1 − k)kr −

(
k3 + k + 3

)
r2 +

(
k2 + 1

)
r3 + kr4 − r5

k(k2 − r2)(1 − r2)

≥ 0

for k3 + (1 − k)kr −
(
k3 + k + 3

)
r2 +

(
k2 + 1

)
r3 + kr4 − r5 > 0 with r < 1.

Next, we determine the smallest real root of the polynomial k3 + (1 − k)kr −(
k3 + k + 3

)
r2 +

(
k2 + 1

)
r3 + kr4− r5 using some well known numerical tech-

niques. To calculate the approximate value of the smallest real root of the poly-
nomial (1), we define H(x) = k3 + (1 − k)kx−

(
k3 + k + 3

)
x2 +

(
k2 + 1

)
x3 +

kx4−x5 > 0 and apply Bisection method, Regula Falsi method, Newton Raph-
son method and Secant method. We take a and b as the initial approximations
and tolerance defined by |a − b| is taken as 10−10. The following table gives
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the approximate value of the polynomial H(x) at the last iteration, number
of iterations required to reach desired accuracy, value of initial approximations
and the value of the desired root obtained by the considered methods:

S. No. Numerical method root(x) H(x) Initial approximations No of iterations
1 Bisection 0.9664 -1.125e-11 a = 0, b = 1 34
2 Secant 0.9664 3.079e-11 a = 0, b = 1 3
3 Regula falsi 0.9664 -5.427e-12 a = 0, b = 1 4
4 Newton Raphson 0.9664 5.329e-15 a = 1 4

Table 1. Calculation of the positive root of the poly-
nomial H(x) using various root finding methods

It can be seen from the above table that the secant method works best for
the given polynomial H(x) as it requires least number of approximations to
reach the desired accuracy. Performance of the considered numerical schemes
is also demonstrated in figure 1 by plotting the value of function H(x) for
various schemes as well as the continuous function.

Let n be a fixed positive integer. The Bell numbers Bn satisfy a relation
Bn+1 =

∑n
k=0

(
n
k

)
Bk. In [13], authors considered the analytic function

Q(z) := ee
z−1 = 1 + z + z2 +

5

6
z3 +

5

8
z4 + · · · =

∞∑
n=0

Bn
zn

n!
, (z ∈ D)

whose coefficients are Bell numbers. The function Q is starlike with respect to
1 and satisfy subordination relation zf ′(z)/f(z) ≺ Q(z) for z ∈ D. The class
of such functions is denoted by S∗

B . Further, Cho et.al. [4, Lemma 3.1, p. 11]
obtained the following result related to the class S∗

B :
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Figure 1. Plot of the continuous function H(x) and its
value for various numerical methods

Lemma 2.2. Let Q(z) := ee
z−1, z ∈ D and ρ : [e1/e−1, ee−1] → R+ be the

function

ρ(a) :=

{
ea−e1/e

e , e
1
e−1 ≤ a ≤ e1/e+ee

2e ;
ee−ea

e , e1/e+ee

2e ≤ a ≤ ee−1.

Then, for w ∈ C, the following inclusions hold:

|w − a| < ρ(a) ⊂ Q(D) ⊂ |w − 1| < ee − e

e
.

Next, we compute the S∗
B-radius estimate for the various known subclasses

of starlike functions. The main technique involved in tackling the S∗
B-starlikeness

for the classes of functions f is to determine the disk which contain the image
of the open unit disk under the quantity zf ′(z)/f(z).

Theorem 2.3. The S∗
B-radius estimate for the various subclasses S∗

L, S∗
e ,

S∗
s , S∗

RL, BS
∗(α), S∗

C , S∗
R and S∗

q are given:

(i) RS∗
B

(S∗
L) = (e2 − e(2/e))/e2 ≈ 0.717546.

(ii) RS∗
B

(S∗
e ) = (e− 1)/e ≈ 0.632121.

(iii) RS∗
B

(S∗
s ) = log

(
(
√

2e2 − 2e1+
1
e + e2/e − e1/e + e)/e

)
≈ 0.452894.



632 Sushil Kumar, Pratima Rai, and Asena Çetinkaya

(iv) RS∗
B

(S∗
RL) =

−e2 + 2
√

2e2 − 2
√

2e1+
1
e + e2/e

−e2 + 2
√

2e2 − 8e1+
1
e + 4

√
2e1+

1
e − 2e2/e + 2

√
2e2/e

≈ 0.743676.

(v) RS∗
B

(BS∗(α)) =
e−

√
−2e1+

1
eα + e2/eα + e2α + e2

α(e1/e − e)
, where 0 ≤ α < 1.

(vi) RS∗
B

(S∗
C) =

√
2
(
5e2−3e1+

1
e

)
−2e

2e ≈ 0.304916.
(vii) RS∗

B
(S∗

R) = r∗R, where

r∗R =

e1/e
(
1 +

√
2
)
− 2e

(
1 +

√
2
)

+

√(
3 + 2

√
2
) (

8e2 − 8e1+
1
e + e2/e

)
2e

≈ 0.650794.

(viii) RS∗
B

(S∗
q ) = ((

√
2e4 − 2e2+

2
e + e4/e + e2)/2e2)1/2 ≈ 0.389544.

The first five radius estimates are sharp.

Proof. Consider |z| = r.

(i) Let the function f ∈ S∗
L. Then

(3)

∣∣∣∣zf ′(z) − f(z)

f(z)

∣∣∣∣ ≤ 1 −
√

1 − r.

From Lemma 2.2 and the inequality (3), it is noted that the function
f ∈ S∗

B if √
1 − r ≥ e(1/e)−1,

which gives the desired result. The radius estimate is best possible for
the function

fl(z) =
4ze(2

√
1+z−2)

(1 +
√

1 + z)2
.

(ii) Since the function f ∈ S∗
e , then

(4)

∣∣∣∣zf ′(z) − f(z)

f(z)

∣∣∣∣ ≤ 1 − e−r.

Using Lemma 2.2 and the inequality (4), it is observed that the function
f ∈ S∗

B if 1 − e−r ≤ 1 − e(1/e)−1. The sharpness follows for the function
fe given as

log
fe(z)

z
=

∫ z

0

eu − 1

u
du.

(iii) Let f ∈ S∗
s . By a simple calculation, we have

(5)

∣∣∣∣zf ′(z) − f(z)

f(z)

∣∣∣∣ ≤ sinh r.

By Lemma 2.2 and the inequality (5), the function f belongs to the class
S∗
B provided

sinhr ≤ 1 − e(1/e)−1,
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equivalently

e2r+1 + 2e(er+1)/e − 2er+1 − e ≤ 0

or

e2r + 2(e(1/e)−1 − 1)er − 1 ≤ 0.

The function

fs(z) = z exp

(∫ z

0

sin z

z
dz

)
shows the sharpness.

(iv) Let the function f ∈ S∗
RL. Then it is computed that∣∣∣∣zf ′(z) − f(z)

f(z)

∣∣∣∣ ≤

∣∣∣∣∣√2 − (
√

2 − 1)

(
1 − z

1 + 2(
√

2 − 1)z

)1/2

− 1

∣∣∣∣∣
≤ 1 −

(
√

2 − (
√

2 − 1)

√
1 + r

1 − 2(
√

2 − 1)r

)
.(6)

By using Lemma 2.2, the disk defined by (6) lies in the domain Q(D) if
the following inequality hold:

√
2 − (

√
2 − 1)

(
1 + r

1 − 2(
√

2 − 1)r

)1/2

≥ e(1/e)−1,

equivalently

1 + r

1 − 2(
√

2 − 1)r
≤ (

√
2 − e(1/e)−1)2

(
√

2 − 1)2
.

From the last inequality, we get the best possible radius estimate which
is verified by the function

log
fRL(z)

z
=

∫ z

0

1

z

((√
2 − 1

)(
−
√

1 − z

2
(√

2 − 1
)
z + 1

)
+

√
2 − 1

)
dz.

(v) For 0 ≤ α < 1, if f ∈ BS∗(α), then

(7)

∣∣∣∣zf ′(z) − f(z)

f(z)

∣∣∣∣ ≤ r

1 − αr2
.

From Lemma 2.2, the disk defined by (7) is contained in the domain
Q(D) if

r

1 − αr2
≤ 1 − e(1/e)−1,

and it is equivalent to

αr2 +

(
e

e− e1/e

)
r ≤ 1,
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which gives the required radius estimate. The obtained estimate is best
possible for the function fBα defined as

log
fBα(z)

z
= z

tanh−1(
√
αz)√

α
.

(vi) Let the function f ∈ S∗
C . We have

(8)

∣∣∣∣zf ′(z) − f(z)

f(z)

∣∣∣∣ ≤ 1

3
(4r + 2r2).

From the Lemma 2.2 and the disk defined by (8), the function f belongs
to S∗

B if

1 − 1

3
(4r + 2r2) ≥ e(1/e)

e
.

Therefore, we get the required estimate.
(vii) Since f ∈ S∗

R, then a computation yields

(9)

∣∣∣∣zf ′(z) − f(z)

f(z)

∣∣∣∣ ≤ kr + r2

k2 − kr
.

Using Lemma 2.2 and the inequality (9), the function f belongs to the
class S∗

B provided

kr + r2

k2 − kr
− 1 ≤ −e(1/e)−1,

equivalently

r2 + (ek + k(e− e1/e))r − k2(e− e1/e) ≤ 0,

which yields the required result.
(viii) Since the function f ∈ S∗

q , then

(10)

∣∣∣∣zf ′(z) − f(z)

f(z)

∣∣∣∣ ≤ 1 − r −
√

1 − r2.

From Lemma 2.2, it is noted that the disk defined by (10) is contained
in the domain Q(D) if

r +
√

1 − r2 ≥ e(1/e)

e
or

4r4 − 4r2 + (e2((1/e)−1) − 1)2 ≤ 0,

that yields the radius constant.

Recently, Wani and Swaminathan [23] introduced a class S∗
Ne which is as-

sociated to the Caratheodory function φNe(z) = 1 + z − z3/3. This function
starlike with respect to 1 and maps the unit disk onto the nephroid shaped
region. By technique used in Theorem ??, next result provides the S∗

B , S∗
R,

S∗
L, S∗

RL, BS∗(α), S∗
e , S∗

s , SG∗-radii for the class S∗
Ne.
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Theorem 2.4. For the class S∗
Ne, the following radius estimates are ob-

tained:

(i) The S∗
B-radius estimate=0.514559.

(ii) The S∗
R-radius estimate=0.169937.

(iii) The S∗
L-radius estimate=0.393849.

(iv) The S∗
RL-radius estimate=0.278708.

(v) The BS∗(α)-radius estimate is a real root of the equation (1 + α)r3 +
3(1 + α)r − 3 = 0, where 0 ≤ α < 1.

(vi) The S∗
e -radius estimate=0.570294.

(vii) The S∗
s -radius estimate=0.718059.

(viii) The SG∗-radius estimate=0.43473.

The first five results are sharp.

Proof. Let |z| = r and the function f ∈ S∗
Ne. Then we have

(11)

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ r +
r3

3
.

(i) In view of Lemma 2.2, it is easy to check that the disk in (11) lies inside
the domain Q(D) if

r +
r3

3
≤ 1 − e(1/e)−1,

equivalently

r3 + 3r − 3 + 3e(1/e)−1 ≤ 0.

The last inequality gives the required radius estimate.
(ii) As an application of [12, Lemma 2.2, p.202], it is evident that the disk

given by (11) lies in the domain φ0(D) := {w ∈ C : |w+(w2+4w−4)1/2| <
2(
√

2 − 1)} if

r +
r3

3
≤ 3 − 2

√
2

or

r3 + 3r − 9 + 6
√

2 ≤ 0,

which gives the required estimate.
(iii) Using Lemma [1, Lemma 2.2, p.6559], we observe that the disk defined

by (11) lies in the domain
√

1 + z(D) if

r +
r3

3
≤

√
2 − 1,

equivalently

r3 + 3r + 3 − 3
√

2 ≤ 0,

which yields the desired estimate.
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(iv) By [15, Lemma 3.2, p.9 ], it is noted that the disk defined by (11) lies
inside the domain φRL(z)(D) if

r +
r3

3
≤

√√
2
√

2 − 2 − (2
√

2 − 2)

or

r3 + 3r − 3

√√
2
√

2 − 2 − (2
√

2 − 2) ≤ 0.

The real root of this inequality is the desired radius estimate.
(v) Using [3, Lemma 3.4, p. 1392] and the inequality (11), the function f is

to be in the class BS∗(α) if

r +
r3

3
≤ 1

1 + α
,

which gives the radius estimate.
(vi) Using [16, Lemma 2.2, p. 368], it is noted that the disk defined by (11)

lies inside the domain ez(D) if

r +
r3

3
≤ e− 1

e
,

which gives the radius estimate.
(vii) By an application of [5, Lemma 3.3, p. 219] and the inequality (11), the

function f ∈ S∗
s if

r +
r3

3
≤ sin 1,

which gives the radius estimate.
(viii) Let G(D) = {w ∈ C; | log(w/(2 − w))| < 1} where G(z) = 2/(1 + e−z)

is the modified Sigmoid function which is convex and symmetric with
respect to the real axis. By an application of [7, Lemma 2.2, p. 961], it
is noted that the disk defined by (11) lies inside the domain G(D) i.e.
the function f ∈ SG∗ if

r3 + 3r − 3
e− 1

e + 1
≤ 0,

which gives the radius estimate.

Next theorem provides the BS∗(α)-radius estimate for the classes S∗
C , S∗

R,
S∗
L and S∗

q .

Theorem 2.5. The BS∗(α)-radius estimate for

(i) the class S∗
C is given as:

RBS∗(α)(S∗
C) =

√
2α + 5

2 + 2α
− 1.

In particular, RBS∗(0.9)(S∗
C) = 0.337712.
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(ii) the class S∗
R is given as:

RBS∗(α)(S∗
R) =

−k(2 + α) + k
√
α2 + 8α + 8

2(1 + α)
.

In particular, RBS∗(0.9)(S∗
R) = 0.699645.

(iii) the class S∗
L is rl which is a positive real root of the equation

(1 + α)(1 −
√

1 − r) − 1 = 0.

In particular, RBS∗(0.9)(S∗
L) = 0.775623.

(iv) the class S∗
q is rq which is a positive real root of the equation

(1 + α)(1 − r −
√

1 − r2) − 1 = 0.

In particular, RBS∗(0.9)(S∗
q ) = 0.42942046.

The first estimate is sharp.

Proof. (i) Using [3, Lemma 3.4, p. 1392] and the disk defined by (8), the
function f belongs to the class BS∗(α) provided

2(1 + α)r2 + 4(1 + α)r − 3 ≤ 0,

which yields the required estimate.
As part (i), we get the proof of the part (ii), (iii) and (vi).
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