• Title/Summary/Keyword: quantitative reasoning of unit

Search Result 6, Processing Time 0.022 seconds

Elementary school students' levels of quantitative reasoning of units: Using open number line tasks (초등학교 저학년 학생의 단위 추론 수준: 개방형 수직선 과제를 중심으로)

  • Park, Jukyung;Yeo, Sheunghyun
    • The Mathematical Education
    • /
    • v.62 no.4
    • /
    • pp.457-471
    • /
    • 2023
  • Measurement is an imperative content area of early elementary mathematics, but it is reported that students' understanding of units in measurement situations is insufficient despite its importance. Therefore, this study examined lower-grade elementary students' quantitative reasoning of units in length measurement by identifying the levels of reasoning of units. For this purpose, we collected and analyzed the responses of second-grade elementary school students who engaged in a set of length measurement tasks using an open number line in terms of unitizing, iterating, and partitioning. As a result of the study, we categorized students' quantitative reasoning of unit levels into four levels: Iterating unit one, Iterating a given unit, Relating units, and Transforming units. The most prevalent level was Relating units, which is the level of recognizing relationships between units to measure length. Each level was illustrated with distinct features and examples of unit reasoning. Based on the results of this study, a personalized plan to the level of unit reasoning of students is required, and the need for additional guidance or the use of customized interventions for students with incomplete unit reasoning skills is necessary.

An Analysis of Proportional Reasoning of Elementary School Students - Focused on Sixth Graders - (초등학생들의 비례 추론 전략 분석 -6학년을 중심으로-)

  • Jung, Yoo Kyung;Chong, Yeong Ok
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.4
    • /
    • pp.457-484
    • /
    • 2015
  • This study aims to investigate an approach to teach proportional reasoning in elementary mathematics class by analyzing the proportional strategies the students use to solve the proportional reasoning tasks and their percentages of correct answers. For this research 174 sixth graders are examined. The instrument test consists of various questions types in reference to the previous study; the proportional reasoning tasks are divided into algebraic-geometric, quantitative-qualitative and missing value-comparisons tasks. Comparing the percentages of correct answers according to the task types, the algebraic tasks are higher than the geometric tasks, quantitative tasks are higher than the qualitative tasks, and missing value tasks are higher than the comparisons tasks. As to the strategies that students employed, the percentage of using the informal strategy such as factor strategy and unit rate strategy is relatively higher than that of using the formal strategy, even after learning the cross product strategy. As an insightful approach for teaching proportional reasoning, based on the study results, it is suggested to teach the informal strategy explicitly instead of the informal strategy, reinforce the qualitative reasoning while combining the qualitative with the quantitative reasoning, and balance the various task types in the mathematics classroom.

Reconsideration of Teaching Addition and Subtraction of Fractions with Different Denominators: Focused on Quantitative Reasoning with Unit and Recursive Partitioning (이분모분수의 덧셈과 뺄셈 교육 재고 - 단위 추론 및 재귀적 분할을 중심으로 -)

  • Lee, Jiyoung;Pang, JeongSuk
    • School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.625-645
    • /
    • 2016
  • This study clarified the big ideas related to teaching addition and subtraction of fractions with different denominators based on quantitative reasoning with unit and recursive partitioning. An analysis of this study urged us to re-consider the content related to the addition and subtraction of fraction. As such, this study analyzed textbooks and teachers' manuals developed from the fourth national mathematics curriculum to the most recent 2009 curriculum. In addition and subtraction of fractions with different denominators, it must be emphasized the followings: three-levels unit structure, fixed whole unit, necessity of common measure and recursive partitioning. An analysis of this study showed that textbooks and teachers' manuals dealt with the fact of maintaining a fixed whole unit only as being implicit. The textbooks described the reason why we need to create a common denominator in connection with the addition of similar fractions. The textbooks displayed a common denominator numerically rather than using a recursive partitioning method. Given this, it is difficult for students to connect the models and algorithms. Building on these results, this study is expected to suggest specific implications which may be taken into account in developing new instructional materials in process.

FMECA using Fault Tree Analysis (FTA) and Fuzzy Logic (결함수분석법과 퍼지논리를 이용한 FMECA 평가)

  • Kim, Dong-Jin;Shin, Jun-Seok;Kim, Hyung-Jun;Kim, Jin-O;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1529-1532
    • /
    • 2007
  • Failure Mode, Effects, and Criticality Analysis (FMECA) is an extension of FMEA which includes a criticality analysis. The criticality analysis is used to chart the probability of failure modes against the severity of their consequences. The result highlights failure modes with relatively high probability and severity of consequences, allowing remedial effort to be directed where it will produce the greatest value. However, there are several limitations. Measuring severity of failure consequences is subjective and linguistic. Since The result of FMECA only gives qualitative and quantitative informations, it should be re-analysed to prioritize critical units. Fuzzy set theory has been introduced by Lotfi A. Zadeh (1965). It has extended the classical set theory dramatically. Based on fuzzy set theory, fuzzy logic has been developed employing human reasoning process. IF-THEN fuzzy rule based assessment approach can model the expert's decision logic appropriately. Fault tree analysis (FTA) is one of most common fault modeling techniques. It is widely used in many fields practically. In this paper, a simple fault tree analysis is proposed to measure the severity of components. Fuzzy rule based assessment method interprets linguistic variables for determination of critical unit priorities. An rail-way transforming system is analysed to describe the proposed method.

  • PDF

A Critical Review on the Use of Cuisenaire Rods in Learning of Fraction (초등학교 분수 학습에서 퀴즈네어 막대 활용에 대한 비판적 고찰)

  • Lee, Jiyoung
    • The Mathematical Education
    • /
    • v.56 no.2
    • /
    • pp.193-212
    • /
    • 2017
  • This study focuses on cuisenaire rods that can be used when teaching fractions to elementary school students. First of all, this study critically examines the use of cuisenaire rods in learning of fraction proposed by various researches. Then, based on this review, this study explores in detail the use of cuisenaire rods in teachers' manuals developed from the revised curriculum by 2009 and in lessons related to fraction. The results of this study show that there are subtle differences in how to use cuisenaire rods in learning fractions and these subtle differences have a significant impact on students' understanding of the fractions. Therefore, the teachers should be able to accurately grasp the differences and utilize appropriate methods for teaching purpose. The followings are some of the implications for teachers or textbook developers when using cuisenaire rods in fraction learning: First, we should use cuisenaire rods in ways that can fully exploit the interpretations of the fraction as a part-whole and the fraction as a ratio. Second, we should focus on quantitative reasoning with unit to determine what each cuisenaire rod refers to. Third, it is necessary to take a more careful and sensitive approach to the use of cuisenaire rods. Teachers and textbook developers should constantly explore ways to make good use of mathematical manipulatives to help students understand conceptually in fractional learning. Furthermore, when teaching various mathematical topics using different manipulatives, I expect that there will be sufficient discussions and specific studies on how to use each of these manipulatives.

Exploring fraction knowledge of the stage 3 students in proportion problem solving (단위 조정 3단계 학생의 비례 문제 해결에서 나타나는 분수 지식)

  • Lee, Jin Ah;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.1-28
    • /
    • 2022
  • The purpose of this study is to explore how students' fractional knowledge is related to their solving of proportion problems. To this end, 28 clinical interviews with four middle-grade students, each lasting about 30~50 minutes, were carried out from May 2021 to August 2021. The present study focuses on two 7th grade students who exhibited their ability to coordinate three levels of units prior to solving whole number problems. Although the students showed interiorization of three levels of units in solving whole number problems, how they coordinated three levels of units were different in solving proportion problems depending on whether the problems required reasoning with whole numbers or fractions. The students could coordinate three levels of units prior to solving the problems involving whole numbers, they coordinated three levels of units in activity for the problems involving fractions. In particular, the ways the two students employed partitioning operations and how they coordinated quantitative unit structures were different in solving proportion problems involving improper fractions. The study contributes to the field by adding empirical data corroborating the hypotheses that students' ability to transform one three levels of units structure into another one may not only be related to their interiorization of recursive partitioning operations, but it is an important foundation for their construction of splitting operations for composite units.