• Title/Summary/Keyword: quadrature amplitude modulation (QAM)

Search Result 113, Processing Time 0.025 seconds

Iterative Decoding Performance for Gray Coded QAM Signals with I/Q Phase Unbalance (I/Q 위상 불균형을 동반한 Gray 부호화된 QAM 신호의 반복 복호 성능)

  • Kim Ki-Seol;Park Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.611-616
    • /
    • 2006
  • In this paper, we propose a practical implementation method of a soft bit decision expression for an R-QAM (Gray coded Rectangular Quadrature Amplitude Modulation) signal based on the Max-Log-MAP algorithm. The parameters of the soft decision expression for the practical implementation can be obtained with simple arithmetic functions associated with some deterministic parameters such as a received value, distances between symbols, and the order of modulation on a signal space. Also, we analyze the performance of an iterative decoding scheme for the QAM signal with I/Q phase unbalance. The unbalance results from the non-ideal characteristic of components such as a phase shifter between in-phase and quadrature paths for quadrature modulator/demondulator.

Performance and Operating Characteristics Analysis of the 16-APSK Modulation over Nonlinear Channels (16-APSK 변조 방식의 성능 및 비선형 채널에서의 동작 특성 분석)

  • Kang, Seok-Heon;Kim, Sang-Tae;Sung, Won-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.362-369
    • /
    • 2007
  • APSK (Amplitude Phase Shift Keying) digital modulation is characterized by the circular positioning of the transmission symbols in the constellation diagram. Due to such structural characteristics, the peak-to-average power ratio of the APSK modulation is lower than that of the QAM (Quadrature Amplitude Modulation), and the amount of performance degradation over nonlinear channels can be mitigated. The APSK modulation scheme has recently been adopted as satellite communication system standards including the DVB-S2 (Digital Video Broadcasting - Satellite, Version 2). In this paper, a BER (Bit Error Rate) upper bound approximation formula is derived using the channel model with the output power saturation characteristics, and its accuracy is demonstrated. Using the derived formula, the input power level that minimizes the BER is determined. The optimized performance based on the radii ratio of the 16APSK constellation and the channel saturation level is also presented.

Normalization Factor for Three-Level Hierarchical 64QAM Scheme (3-level 계층 64QAM 기법의 정규화 인수)

  • You, Dongho;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.77-79
    • /
    • 2016
  • In this paper, we consider hierarchical modulation (HM), which has been widely exploited in digital broadcasting systems. In HM, each independent data stream is mapped to the modulation symbol with different transmission power and normalization factors of conventional M-QAM cannot be used. In this paper, we derive the method and formula for exact normalization factor of three-level hierarchical 64QAM.

Generalized BER Analysis of Arbitrary Rectangular QAM (임의의 사각형 QAM의 일반화된 비트 오율 분석)

  • Yoon Dong-Weon;Cho, Kyong-Kuk;Suh, Ki-Bum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10A
    • /
    • pp.962-968
    • /
    • 2002
  • Reliable high-speed data communications over insufficient channel bandwidth is one of the major challenges of harsh wireless environments that push the achievable spectral efficiency far below its theoretical limits. A Quadrature amplitude modulation (QAM) scheme is a userful modulation technique for achieving high data rate transmission without increasing the bandwidth of wireless communication systems. The exact general bit error rate (BER) expression of arbitrary rectangular quadrature amplitude modulation has not yet been derived. In this paper, a generalized closed-form expression for the BER performance of rectangular QAM with Gray code bit mapping is derived and analyzed in the presence of additive white Gaussian noise (AWGN) channel. First we analyze the BER performance of an I-ary PAM scheme. Regular patterns in the k-th bit error probability are observed while developing the EBR expression. From these patterns we provide the exact and general closed-from EBR expression of an I-ary PAM. Then we present a general closed-from expression for BER of an arbitrary IXJ rectangular QAM by considering that this signaling format consists of two PAM scheme, i.e., I-ary and J-ary PAM. A simple approximate BER expression for rectangular QAM is given as well.

Performance Analysis of Channel Coded OFDM 16-QAM Signal on Frequency Selective Rician Fading Channel (주파수 선택성 라이시안 페이딩 채널에서 채널 부호화된 OFDM 16-QAM 신호의 성능 해석)

  • Kim Young-Chul;Oh Chung-Gyun;Kang Duk-Keun
    • Journal of Digital Contents Society
    • /
    • v.5 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • In this paper, we have analyzed the error performance of OFDM (Orthogonal Frequency Division Multiplexing 16 QAM (Quadrature Amplitude Modulation) Signal in a multipath fading environment modeled as frequency selective Rician fading. We have used a three-path model as frequency selective Rician fading used Rician parameter K. A BCH channel coding is used in order to improve the performance. From the result of this analysis, we have known the improvement of the error performance improvement and the error correcting capability by the BCH channel coding. From the results, the error performance, about $10^{-6},$ required in wireless multimedia communications can not be achieved by using only the BCH channel coding technique so that it should be adopted a new technique together.

  • PDF

16-QAM Periodic Complementary Sequence Mates Based on Interleaving Technique and Quadriphase Periodic Complementary Sequence Mates

  • Zeng, Fanxin;Zeng, Xiaoping;Xiao, Lingna;Zhang, Zhenyu;Xuan, Guixin
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.581-588
    • /
    • 2013
  • Based on an interleaving technique and quadriphase periodic complementary sequence (CS) mates, this paper presents a method for constructing a family of 16-quadrature amplitude modulation (QAM) periodic CS mates. The resulting mates arise from the conversion of quadriphase periodic CS mates, and the period of the former is twice as long as that of the latter. In addition, based on the existing binary periodic CS mates, a table on the existence of the proposed 16-QAM periodic CS mates is given. Furthermore, the proposed method can also transform a mutually orthogonal (MO) quadriphase CS set into an MO 16-QAM CS set. Finally, three examples are given to demonstrate the validity of the proposed method.

Quadrature Correlated Superposition Modulation: Practical Perspective of Correlated Superposition Coding

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Recently, a lossless non-orthogonal multiple access (NOMA) implementation without successive interference cancellation (SIC) has been proposed in the literature of NOMA. This lossless non-SIC NOMA was achieved via correlated superposition coding (CSC), in contrast to conventional independent superposition coding (ISC). However, only the achievable data rates for CSC NOMA were investigated. Thus, this paper proposes a practical CSC NOMA scheme under Rayleigh fading channel environments. First, we design the practical CSC NOMA scheme, namely quadrature correlated superposition modulation (CSM) NOMA, without channel coding, i.e., uncoded systems. In addition, we calculate the symbol error rates (SERs) for this quadrature CSM NOMA scheme. Then, simulations demonstrate that for the weak channel gain's user, the SER performance of the proposed quadrature CSM NOMA is shown to be improved greatly, compared to that of the conventional quadrature amplitude modulation (QAM) NOMA, whereas for the strong channel gain's user, the SER performance of the proposed quadrature CSM NOMA degrades a little, compared to that of the conventional QAM NOMA. As a result, the proposed quadrature CSM NOMA scheme could be considered as a practical NOMA scheme for CSC NOMA schemes toward the fifth-generation (5G) and next generation communications.

Linear Diversity Analysis for M-ary Square Quadrature Amplitude Modulation over Nakagami Fading Channels

  • Yoon, Dong-Weon;Chang, Dae-Ig;Kim, Nae-Soo;Woo, Hoon-Shik
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.231-237
    • /
    • 2003
  • We derive and analyze the exact closed-form expression for the average bit error probability (BEP) of M-ary square quadrature amplitude modulation (QAM) for diversity reception in frequency-nonselective Nakagami fading. A maximal ratio combining (MRC) diversity technique with independent or correlated fading cases are considered. Numerical results demonstrate error performance improvement with the use of MRC diversity reception. The presented new expressions offer a convenient way to evaluate the performance of M-ary square QAM with an MRC diversity combiner for various cases of practical interest.

  • PDF

Performance Evaluation of Turbo coded Adaptive QAM Systems for High-speed Mobile Multimedia Communications (고속 이동 멀티미디어 통신을 위한 터보 부호 적응 QAM 시스템의 성능 분석)

  • 백흥현;정연호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.216-222
    • /
    • 2004
  • Frequency selective fading is a limiting factor for transmission rate and performance in high-speed multimedia communications. In this paper, we propose a turbo coded adaptive quadrature amplitude modulation (QAM) system for efficient high-speed transmission. By making use of a user-friendly simulation platform of SPW, the proposed turbo coded adaptive QAM system(TuAQAM) is developed and its performance is evaluated in terms of throughput and BER performance. Two channel models having delay spreads of 700ns and 1400ns are created for the simulations. It is shown that the proposed TuAQAM system provides a performance improvement of approximately 3dB and improved throughput for the channel model whose delay spread is 700ns. Similarly, a performance improvement is also achieved for the channel model whose delay spread is 1400ns.

  • PDF

Performance Improvement of Adaptive Modulation Systems in Wireless Multimedia Communication Environment (무선 멀티미디어 통신 환경에서 적응변조시스템의 성능개선)

  • 강희조
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.893-898
    • /
    • 2003
  • This paper proposes a Truncated Type-II Hybrid ARQ scheme and coding techniques using an adaptive modulation system to achieve high throughput data transmission systems for wireless multimedia communication systems. In this paper, the adaptive modulation system analyzed in Nakagami (m-distribution) fading channel environment. The adaptive modulation system controls the modulation level and symbol rate according to the Nakagami fading parameter(m). When the received Eb/No is high or the Nakagami fading parameter m is high, the propose system selects higher modulation level and higher symbol rate to increase throughput. On the other hand, this system selects lower modulation level and lower symbol rate to prevent throughput performance degradation when the received Eb/No is low. The modulation method have been adopted QPSK(Quadrature Phase Shift Keying), 16QAM(Quadrature Amplitude Modulation), 64QAM, 256QAM. Therefore, adaptive modulation systems with truncated type-II hybrid ARQ scheme is proper for wireless multimedia communication system that require high reliability and delay-limited applications.