• 제목/요약/키워드: q-calculus operator

검색결과 9건 처리시간 0.019초

SYMBOLS OF MINIMUM TYPE AND OF ZERO CLASS IN EXPONENTIAL CALCULUS

  • LEE, Chang Hoon
    • East Asian mathematical journal
    • /
    • 제34권1호
    • /
    • pp.29-37
    • /
    • 2018
  • We introduce formal symbols of product type, of zero class, and of minimum type and show that the formal power series representations for $e^p$ and $e^q$ are formal symbols of product type giving the same pseudodifferential operator, where p and q are formal symbols of minimum type and p - q is of zero class.

MAJORIZATION PROBLEMS FOR UNIFORMLY STARLIKE FUNCTIONS BASED ON RUSCHEWEYH q-DIFFERENTIAL OPERATOR RELATED WITH EXPONENTIAL FUNCTION

  • Vijaya, K.;Murugusundaramoorthy, G.;Cho, N.E.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.71-81
    • /
    • 2021
  • The main object of this present paper is to study some majorization problems for certain classes of analytic functions defined by means of q-calculus operator associated with exponential function.

PARTIAL SUMS AND NEIGHBORHOODS OF JANOWSKI-TYPE SUBCLASSES OF MEROMORPHIC FUNCTIONS

  • Abdullah Alatawi;Maslina Darus
    • Korean Journal of Mathematics
    • /
    • 제31권3호
    • /
    • pp.259-267
    • /
    • 2023
  • The paper presents the introduction of a novel linear derivative operator for meromorphic functions that are linked with q-calculus. Using the linear derivative operator, a new category of meromorphic functions is generated in the paper. We obtain sufficient conditions and show some properties of functions belonging to these subclasses. The partial sums of its sequence and the q-neighborhoods problem are solved.

ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

  • Om P. Ahuja;Asena Cetinkaya;Naveen Kumar Jain
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1111-1126
    • /
    • 2023
  • In this paper, we define a new subclass of k-uniformly starlike functions of order γ (0 ≤ γ < 1) by using certain generalized q-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.

Coefficient Estimates for a Subclass of Bi-univalent Functions Defined by Sălăgean Type q-Calculus Operator

  • Kamble, Prakash Namdeo;Shrigan, Mallikarjun Gurullingappa
    • Kyungpook Mathematical Journal
    • /
    • 제58권4호
    • /
    • pp.677-688
    • /
    • 2018
  • In this paper, we introduce and investigate a new subclass of bi-univalent functions defined by $S{\breve{a}}l{\breve{a}}gean$ q-calculus operator in the open disk ${\mathbb{U}}$. For functions belonging to the subclass, we obtain estimates on the first two Taylor-Maclaurin coefficients ${\mid}a_2{\mid}$ and ${\mid}a_3{\mid}$. Some consequences of the main results are also observed.

A RESERCH ON NONLINEAR (p, q)-DIFFERENCE EQUATION TRANSFORMABLE TO LINEAR EQUATIONS USING (p, q)-DERIVATIVE

  • ROH, KUM-HWAN;LEE, HUI YOUNG;KIM, YOUNG ROK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.271-283
    • /
    • 2018
  • In this paper, we introduce various first order (p, q)-difference equations. We investigate solutions to equations which are linear (p, q)-difference equations and nonlinear (p, q)-difference equations. We also find some properties of (p, q)-calculus, exponential functions, and inverse function.

BESSEL-WRIGHT TRANSFORM IN THE SETTING OF QUANTUM CALCULUS

  • Karoui, Ilyes;Dhaouadi, Lazhar;Binous, Wafa;Haddad, Meniar
    • Korean Journal of Mathematics
    • /
    • 제29권2호
    • /
    • pp.253-266
    • /
    • 2021
  • This work is devoted to the study of a q-harmonic analysis related to the q-analog of the Bessel-Wright integral transform [6]. We establish some important properties of this transform and we focalise our attention in studying the associated transmutation operator.

ON CERTAIN GENERALIZED q-INTEGRAL OPERATORS OF ANALYTIC FUNCTIONS

  • PUROHIT, SUNIL DUTT;SELVAKUMARAN, KUPPATHAI APPASAMY
    • 대한수학회보
    • /
    • 제52권6호
    • /
    • pp.1805-1818
    • /
    • 2015
  • In this article, we first consider a linear multiplier fractional q-differintegral operator and then use it to define new subclasses of p-valent analytic functions in the open unit disk U. An attempt has also been made to obtain two new q-integral operators and study their sufficient conditions on some classes of analytic functions. We also point out that the operators and classes presented here, being of general character, are easily reducible to yield many diverse new and known operators and function classes.