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ABSTRACT. In this paper, we introduce and investigate a new subclass of bi-univalent
functions defined by Sdldgean q-calculus operator in the open disk U. For functions be-
longing to the subclass, we obtain estimates on the first two Taylor-Maclaurin coefficients
|az| and |as|. Some consequences of the main results are also observed.

1. Introduction

Let A denote the family of functions analytic in the open unit disk
U={z:2€C and |z| <1},
which are normalized by the condition:
f0)=f'0)-1=0

and given by the following Taylor-Maclaurin series:

(1.1) f(z):z—i—z ay, 2~
k=2
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Also let 8 be the class of functions f € A of the form given by (1.1), which are
univalent in U. The Koebe one-quarter theorem [7] ensures that the image of U
under every univalent function f € 8 contains a disk of radius %. Hence every
function f € 8 has an inverse !, defined by

FHfR) =2 (€0

and
) =, (lol < rlfimln) = 7).
where
f_l(w) =w — asw? + (2@% — ag)w3 — (5a§ — basas + a4)w4 + ...

A function f € A is said to be bi-univalent in U if both f and f~! are univalent
in U. Let ¥ denote the class of bi-univalent functions in U given by the Taylor-
Maclaurin series expansion (1.1). For a brief history and interesting examples of
functions in the class X, see [28] (see also [4]). From the work of Srivastava et al.
[28], we choose to recall the following examples of functions in the class X:

1 1
: —log(1 — z), ilog ( + Z) .

1—2’ 1—=2

However, familiar Koebe function is not a member of X.

The class of bi-univalent functions was investigated by Lewin [13], who proved
that |ag] < 1.51. In 1981, Styer and Wright [30] showed that |as| > 4/3. Subse-
quently, Brannan and Clunie [3] improved Lewin’s result to |az| < v/2. Netanyahu
[14], showed that r;lgz):( lag| = 5. In 1985, Branges [2] proved Bieberbach conjecture

which showed that
lan] <n; (neN-—1),

N being positive integer.

The problem of finding coefficient estimates for the bi-univalent functions has
received much attention in recent years. In fact, the aforecited work of Srivastava
et al. [28] essentially revived the investigation of various subclasses of bi-univalent
function class ¥ in recent years and that it leads to a flood of papers on the subject
(see, for e.g., [6, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29]); it was followed by such
works as those by Tang et al. [31], Xu et al. [32, 33] and Lashin [12], and others
(see, for e.g., [1, 5, 8]). The coefficient estimate problem involving the bound of
lan|(n € N\ {1,2}) for each f € ¥ is still an open problem.

In the field of geometric function theory, various subclasses of the normalized
analytic function class A have been studied from different view points. The ¢-
calculus as well as the fractional calculus provide important tools that have been
used in order to investigate various subclasses of A. Historically speaking, the
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firm footing of the usage of the g¢-calculus in the context of geometric function
theory which was actually provided and ¢-hypergeometric functions were first used
in geometric function theory in a book chapter by Srivastava (see, for details, [18,
pp. 347 et seq.]). Ismail et al. [10] introduced the class of generalized complex
functions via g-calculus on some subclasses of analytic functions. Recently, Purohit
and Raina [16] investigated applications of fractional g-calculus operator to define
new classes of functions which are analytic in unit disk U (see, for details, [9]).
For 0 < g < 1, the g-derivative of a function f given by (1.1) is defined as

{f(z(z;)—l{z(Z) for z # 0,

(1-2) Daf(z) = 1/(0) for z =0.

We note that lim D,f(z) = f'(z). From (1.2), we deduce that

q—1-

(1.3) =143 F

where as ¢ — 1~

(1.4) k], = =1+q+..+¢" —k

Making use of the g¢-differential operator for function f € A, we introduced the
Salagean g-differential operator as given below

Daf(2) = f(2)
Dyf(2) = 2Dy f(2)
Dy f(2) = zDy(Dg™ " f(2))

(1.5) DI f(z —z—i—z "apz®  (n€Np,z€U).

We note that lim, — 17
(1.6) D'f(z) =2+ k'az"®  (n€NgzeU),

the familiar Saldgean derivative [17].

Recently, Kamble and Shrigan [11] introduce the following two subclasses of the
bi-univalent function class ¥ and obtained estimate on first two Taylor-Maclaurin
coefficients |ag| and |as| for functions in these subclasses as follows.

Definition 1.1.([11]) For 0 < o < 1,0 < ¢ < 1,A > 1,4 > Oand n € Ny, a
function f(z) given by (1.1) is said to be in the class HE"(n, a, \) if the following
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conditions are satisfied

(1.7)

feXand |arg <(1 — ) (DZJZ(Z))# ) (D;’f(Z))/ (fof(Z))ul) < %T
and
(1.8) arg ((1 - ) (Dgiwy + A (Dgg(w))/ (Dgi(w)>“—1> < %,

where the function g is given by
(1.9) g(w) = w — azw? + (2a3 — az)w® — (5a3 — 5agaz + as)w* + ...

and Dy is the Saldgean g-differential operator.

Theorem 1.2.([11]) Let f(z) given by (1.1) be in the function class HE" (n, o, N).
Then

(1.10) |ao| < 2a
\/0(2(% + ) [3]7 — (A2 42X + p)[2]27) + (A + p)?[2]2"
and
402 2«
— = O @ Bl

where 0 <a<1,0<q¢<1,A>1,u4>0 andn € Ny.

Definition 1.3.([11]) For 0 < 5 < 1,0 < ¢ < 1,A > 1, > 0 and n € Ny, a function
f(z) given by (1.1) is said to be in the class HE" (n, 3, A) if the following conditions
are satisfied

(112) fe ¥ and Re {(1 —\) (Jl?i"(@y A (DR f(2) (’W>“_l} -3

z

and

(1.13) Re {(1 ) (D'?f’u(w)y + A (DPg(w)) (D?f’“")yl} > 8.

w

Theorem 1.4.([11]) Let f(z) given by (1.1) be in the function class HE" (n, B, N).
Then

| 41-5) 21-5)
(1.14)  |ag| < min {\/l2[3]3} + (= DREM2A+p)| T (A +p)[2]7 }
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and

-9 21-p)
A+ w2227 (22X + w)[3]2”

(1—8) {I4[3]5 + [205" (n — D] = 213" (I — 1))} }

(1.15) |as] <min{

28]5 + (v = DRIZMCA+ 1) [3]7

where 0 < f<1,0<g<1,A>1, >0 andn € Ng.

Remark 1.5. By appropriately specializing the parameters in Definition 1.1 and
1.3, we can get several known subclasses of the bi-univalent function class .. For
example:

(i) For n =0 and ¢ — 17, we obtain the bi-univalent function classes
H(0,0,0) =N, A)  and - HFH(0, 8, A) = NE(B, A)(see(21]);
(ii) For p=1, n=0 and ¢ — 17, we obtain the bi-univalent function classes
35" (0,0,0) =B (e, ) and (0, 8,1) = Bu(B, ) (seels]);
(iii) For p =1 and ¢ — 1~ we obtain the bi-univalent function classes
g{;l(ﬂﬁaa)‘) = ‘BZ(naaa)‘) and %gl(n7/67 )‘) = ‘BZ(n7Ba)‘)(See[15D;

(iv) For p =1, n =0, A =1 and ¢ — 17, we obtain the bi-univalent function
classes

9'(12’1(0, a, 1) = Hs and 5{12’1(0,6, 1) = Hx(B)(see[28));

(v) For y =0, n =0, A\ =1 and ¢ — 17, we obtain the bi-univalent function
classes

9{;0(0, a,1) = 8% () and ﬂ-flz’o(o,ﬁ, 1) = 8%(B)(seel4]).

This paper is a sequel to some of the aforecited works (especially see [11, 32, 33]).
Here we introduce and investigate the general subclass J-Cg’p M psm,g) (0 < g <
1,A > 1,u > 0) of the analytic function class A, which is given by Definition 1.6
below.

Definition 1.6. Let h,p: U — C be analytic functions and
min{Re(h(z)), Re(p(z))} >0  (z € 1) and  h(0) =p(0) = 1.

Also let the function f given by (1.1), be in the analytic function class A. We say
that
feﬂ-(g’p(/\,,u,n,q) (0<g<1,A>1,u>0andn e Ny)
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if the following conditions satisfied:

(1.16)

feXand (1-X) (D;;(z)) + A (D;Lf(z))/ (D;’Z(z)) € h(U) (z € U)
and
(1.17) (1-2x) (DZIZQU(IU)> + A (D;‘g(w))/ (ingﬂ(lu)) ) € p(U) (w € V),

where the function g is given by (1.9).
If fe ﬂ{g’p(/\,,u,n, q), then

(1.18)

fexand |arg <(1 ~ ) (DQZ(Z)Y +A(Drf(2) <l€(2)>ﬂ_l> < %
and
(1.19) arg ((1 Y ( ;’ﬂw))“ + A (Drg(w)) (Dgfu(w))ul> <=
(1.20) f € ¥ and Re {(1 - ) (D‘?f('z)y +A (Dgf(z)), (Dgf(z)y_l} > A3
and
(1.21) Re {(1 Y <in“i(w)>” + M (Dl g(w)) (Dgi(w)yl} > B.

where the function g is given by (1.9).

Our paper is motivated and stimulated especially by the work of Srivastava
et al. [21, 28]. Here we propose to investigate the bi-univalent function subclass
J{g’p()\, i, 1, q) of the function class ¥ and find estimates on the initial coefficients
|az| and |as| for functions in the new subclass of the function class ¥ using Séligean
g-differential operator.

2. A Set of General Coefficient Estimates

In this section, we derive estimates on the initial coefficients |az| and |ag| for
functions in subclass U-Cg’p()\, i, M, q) given by Definition 1.6.
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Theorem 2.1. Let the function f(z) given by Taylor-Maclaurin series expansion
(1.1) be in the function class Hg’p()\,u,n,q). Then

(2.1) az| < min lh’ |2+|p OF [27(0)] + [ (0)]
20+ w227 7Y 222+ ) [(u = DRI + 20303

and
las| < min W O)F + P OF | [h"(©O)] +|p"(0)]
NS 0 R T A Bl
(2.2) |(/~L - 1)[2}271 +4[3 ]q| |h//( )+ | — 1|[2]2n|p//(0)|
| 42X+ ) [3]7 | (n — 1)[2]2" + 2[3]7| :

where 0 < g<1,A>1,u2>0andn € Ny.
Proof. Tt follows from (1.16) and (1.17) that

(2.3) (1) (D‘?f(z))” A (Df(2) (Dgf(z)yl = n(U)

z

and
D%a(w)\* ./ Da(w p—1
(2.4) (1-2X) (qu) + A (D7 g(w)) (‘qu()> =p(U)
Comparing the coefficients of z and 22 in (2.3) and (2.4), we have
(2.5) O+ )20 = ha,
(2.6) (n=1) (A+5) 22703 + 27+ p)[8l7as = ha,
(2.7) ~Ovt+ W2las = pr
and
(2.8) @A+ w)B3las + (48]; + (u - DI22") (A+5) a = po.

From (2.5) and (2.7), we obtain
(2.9) hi = —p1
and

(2.10) 2(A\ + p)*[2]2"a3 = hT + pi.



684 P. N. Kamble and M. G. Shrigan

Also, from (2.6) and (2.8), we find that
(211) {0 - DRI" + 2B} 2\ + )63 = ha + .

Therefore, we find from the equations (2.10) and (2.11) that

Ih’ )2 + Ip )I2
laz| <
2N+ u)?

mﬂ§¢ 1 (O] + 1/(0)]

and

202X+ p) | (1 = 1)[2]2" + 2[3]7

respectively. So we get the desired estimate on the coefficients |as| as asserted in
(2.1).

Next, in order to find the bound on the coefficient |as|, we subtract (2.8) from
(2.6), we get

(2.12) 202X + ) [3]7az — 2[3]7(2\ + p)a3 = hg — pa.

Upon substituting the value of a3 from (2.10) into (2.12), we arrive at

ag = h? +pi ha — p2 .
200+ w2215 222+ p)[3]7
We thus find that
h/ 0 2 / 0 2 h// 0 7 O
(2.13) lag| < IK(0)[* + [p'(0)[* | [n"(0)] + [p"(0)]

2(X + p)2[2]2n 42X + p)[3]2

On the other hand, upon substituting the value of a3 from (2.11) into (2.12), we
arrive at

{(n— 1)[2)2" +4[3] }hrF — 1)[2)2"p,
2027+ B L~ DR+ 23 )

as =

Consequently, we have

| (1 — D203 + 4[3]5 | 11" (0)] + | — 1][213" " (0))]

(2.14) Jas| < 42X+ ) 312 (u — D[22 + 2[3]7

This evidently completes the proof of Theorem 2.1. O

3. Corollaries and Consequences

By Setting u =1, ¢ — 1~ and n = 0 in Theorem 2.1, we deduce the following
consequence of Theorem 2.1.
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Corollary 3.1. Let the functzon f(2) given by Taylor-Maclaurin series expansion
(1.1) be in the function class Bz’p( YA >1). Then

[7(0)]* + [P’ (0 [P"(0)] + |p"(0)]
1 <m
. ! m{\/ 2(1+ 1) 4(1+2))

and

(32)  as| < Inin{lh’(O)IQ + P OF A0+ p"©) _["(0)] }

2(1+ \)2 A1+20)  201+2))

By Setting 4 =0, A =1, ¢ = 17 and n = 0 in Theorem 2.1, we deduce the
following.

Corollary 3.2.([5]) Let the function f(z) given by Taylor-Maclaurin series expan-
sion (1.1) be in the function class B%p. Then

(33) |a2| < min {\/“L/ |2 + |p \/|h// ‘ + |p// )‘ }

and

(54)  |ag| < min {|h'<o>|2+|p'<o>|2+|h"<o>+|p"<o> 3|h"<o>|+|p"<o>|}.

8 8 ’ 8

Remark 3.3. Corollary 3.2 is an improvement of the following estimates obtained
by Xu et al. [33].

Corollary 3.4.([33]) Let the function f(z) given by Taylor-Maclaurin series expan-
sion (1.1) be in the function class Bg’p()\) (A>1). Then

[h"(0)] + [p"(0)]

(3.5) lag| < (1420
and
(3.6) oa] < A

By Setting A =1, p =1, ¢ = 17 and n = 0 in Theorem 2.1, we deduce the
following Corollary 3.5.
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Corollary 3.5.([32]) Let the function f(z) given by Taylor-Maclaurin series expan-
sion (1.1) be in the function class f}(g’p. Then

(3.7) lag| < \/W_yp//(o)
and
(33) g < 0L

4. Concluding Remarks and Observations

The main objective in this paper has been to derive first two Taylor-Maclaurin
coefficient estimates for functions belonging to a new subclass U'Cgp (A, pymy q) of
analytic and bi-univalent function in the open unit disk U. Indeed, by using Salagean
g-calculus operator, we have successfully determined the first two Taylor-Maclaurin
coeflicient estimates for functions belonging to a new subclass ﬂ{g’p (A ey 1, Q).

By means of corollaries and consequences which we discuss in the preceding
section by suitable specializing the parameters A and i, we have also shown already
that the results presented in this paper would generalize and improve some recent
works of Xu et al. [32, 33] and other authors.

Acknowledgements. We thank the referees for their insightful suggestions and
scholarly guidance to revise and improve the results as in present form.
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