Coefficient Estimates for a Subclass of Bi-univalent Functions Defined by Sălăgean Type q-Calculus Operator

Prakash Namdeo Kamble
Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
e-mail: kamble.prakash69@gmail.com
Mallikarjun Gurullingappa Shrigan*
Department of Mathematics, Dr. D Y Patil School of Engineering and Technology, Pune 412205, India
e-mail: mgshrigan@gmail.com
Abstract. In this paper, we introduce and investigate a new subclass of bi-univalent functions defined by Sălăgean q-calculus operator in the open disk \mathbb{U}. For functions belonging to the subclass, we obtain estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Some consequences of the main results are also observed.

1. Introduction

Let \mathcal{A} denote the family of functions analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\},
$$

which are normalized by the condition:

$$
f(0)=f^{\prime}(0)-1=0
$$

and given by the following Taylor-Maclaurin series:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

[^0]Also let \mathcal{S} be the class of functions $f \in \mathcal{A}$ of the form given by (1.1), which are univalent in \mathbb{U}. The Koebe one-quarter theorem [7] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. Hence every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z, \quad(z \in \mathbb{U})
$$

and

$$
f^{-1}(f(w))=w, \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by the TaylorMaclaurin series expansion (1.1). For a brief history and interesting examples of functions in the class Σ, see [28] (see also [4]). From the work of Srivastava et al. [28], we choose to recall the following examples of functions in the class Σ :

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right) .
$$

However, familiar Koebe function is not a member of Σ.
The class of bi-univalent functions was investigated by Lewin [13], who proved that $\left|a_{2}\right|<1.51$. In 1981, Styer and Wright [30] showed that $\left|a_{2}\right|>4 / 3$. Subsequently, Brannan and Clunie [3] improved Lewin's result to $\left|a_{2}\right| \leq \sqrt{2}$. Netanyahu [14], showed that $\max _{f \in \Sigma}\left|a_{2}\right|=\frac{4}{3}$. In 1985, Branges [2] proved Bieberbach conjecture which showed that

$$
\left|a_{n}\right| \leq n ; \quad(n \in N-1),
$$

N being positive integer.
The problem of finding coefficient estimates for the bi-univalent functions has received much attention in recent years. In fact, the aforecited work of Srivastava et al. [28] essentially revived the investigation of various subclasses of bi-univalent function class Σ in recent years and that it leads to a flood of papers on the subject (see, for e.g., $[6,19,20,21,22,23,24,25,26,27,29]$); it was followed by such works as those by Tang et al. [31], Xu et al. [32, 33] and Lashin [12], and others (see, for e.g., $[1,5,8]$). The coefficient estimate problem involving the bound of $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\})$ for each $f \in \Sigma$ is still an open problem.

In the field of geometric function theory, various subclasses of the normalized analytic function class \mathcal{A} have been studied from different view points. The q calculus as well as the fractional calculus provide important tools that have been used in order to investigate various subclasses of \mathcal{A}. Historically speaking, the
firm footing of the usage of the q-calculus in the context of geometric function theory which was actually provided and q-hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava (see, for details, [18, pp. 347 et seq.]). Ismail et al. [10] introduced the class of generalized complex functions via q-calculus on some subclasses of analytic functions. Recently, Purohit and Raina [16] investigated applications of fractional q-calculus operator to define new classes of functions which are analytic in unit disk \mathbb{U} (see, for details, [9]).

For $0<q<1$, the q-derivative of a function f given by (1.1) is defined as

$$
D_{q} f(z)= \begin{cases}\frac{f(q z)-f(z)}{(q-1) z} & \text { for } z \neq 0 \tag{1.2}\\ f^{\prime}(0) & \text { for } z=0\end{cases}
$$

We note that $\lim _{q \rightarrow 1^{-}} D_{q} f(z)=f^{\prime}(z)$. From (1.2), we deduce that

$$
\begin{equation*}
D_{q} f(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1} \tag{1.3}
\end{equation*}
$$

where as $q \rightarrow 1^{-}$

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q}=1+q+\ldots+q^{k} \longrightarrow k \tag{1.4}
\end{equation*}
$$

Making use of the q-differential operator for function $f \in \mathcal{A}$, we introduced the Sălăgean q-differential operator as given below

$$
\begin{align*}
& D_{q}^{0} f(z)=f(z) \\
& D_{q}^{1} f(z)=z D_{q} f(z) \\
& D_{q}^{n} f(z)=z D_{q}\left(D_{q}^{n-1} f(z)\right) \\
& D_{q}^{n} f(z)=z+\sum_{k=2}^{\infty}[k]_{q}^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}, z \in \mathbb{U}\right) \tag{1.5}
\end{align*}
$$

We note that $\lim _{q} \longrightarrow 1^{-}$

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}, z \in \mathbb{U}\right) \tag{1.6}
\end{equation*}
$$

the familiar Sălăgean derivative [17].
Recently, Kamble and Shrigan [11] introduce the following two subclasses of the bi-univalent function class Σ and obtained estimate on first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these subclasses as follows.
Definition 1.1.([11]) For $0<\alpha \leq 1,0<q<1, \lambda \geq 1, \mu \geq 0$ and $n \in \mathbb{N}_{0}$, a function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}^{q, \mu}(n, \alpha, \lambda)$ if the following
conditions are satisfied

$$
\begin{equation*}
f \in \Sigma \text { and }\left|\arg \left((1-\lambda)\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu}+\lambda\left(D_{q}^{n} f(z)\right)^{\prime}\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu-1}\right)\right|<\frac{\alpha \pi}{2} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left((1-\lambda)\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu}+\lambda\left(D_{q}^{n} g(w)\right)^{\prime}\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu-1}\right)\right|<\frac{\alpha \pi}{2} \tag{1.8}
\end{equation*}
$$

where the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{1.9}
\end{equation*}
$$

and D_{q}^{n} is the Sălăgean q-differential operator.
Theorem 1.2.([11]) Let $f(z)$ given by (1.1) be in the function class $\mathcal{H}_{\Sigma}^{q, \mu}(n, \alpha, \lambda)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{\alpha\left(2(2 \lambda+\mu)[3]_{q}^{n}-\left(\lambda^{2}+2 \lambda+\mu\right)[2]_{q}^{2 n}\right)+(\lambda+\mu)^{2}[2]_{q}^{2 n}}} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(\lambda+\mu)^{2}[2]_{q}^{2 n}}+\frac{2 \alpha}{(2 \lambda+\mu)[3]_{q}^{n}}, \tag{1.11}
\end{equation*}
$$

where $0<\alpha \leq 1,0<q<1, \lambda \geq 1, \mu \geq 0$ and $n \in \mathbb{N}_{0}$.
Definition 1.3.([11]) For $0 \leq \beta<1,0<q<1, \lambda \geq 1, \mu \geq 0$ and $n \in \mathbb{N}_{0}$, a function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}^{q, \mu}(n, \beta, \lambda)$ if the following conditions are satisfied

$$
\begin{equation*}
f \in \Sigma \text { and } \operatorname{Re}\left\{(1-\lambda)\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu}+\lambda\left(D_{q}^{n} f(z)\right)^{\prime}\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu-1}\right\}>\beta \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda)\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu}+\lambda\left(D_{q}^{n} g(w)\right)^{\prime}\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu-1}\right\}>\beta \tag{1.13}
\end{equation*}
$$

Theorem 1.4.([11]) Let $f(z)$ given by (1.1) be in the function class $\mathcal{H}_{\Sigma}^{q, \mu}(n, \beta, \lambda)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{4(1-\beta)}{\left|2[3]_{q}^{n}+(\mu-1)[2]_{q}^{2 n}(2 \lambda+\mu)\right|}}, \frac{2(1-\beta)}{(\lambda+\mu)[2]_{q}^{n}}\right\} \tag{1.14}
\end{equation*}
$$

and

$$
\begin{align*}
&\left|a_{3}\right| \leq \min \left\{\frac{4(1-\beta)^{2}}{(\lambda+\mu)^{2}[2]_{q}^{2 n}}+\frac{2(1-\beta)}{(2 \lambda+\mu)[3]_{q}^{n}},\right. \tag{1.15}\\
&\left.\frac{(1-\beta)\left\{\left|4[3]_{q}^{n}+[2]_{q}^{2 n}(\mu-1)\right|-[2]_{q}^{2 n}(|\mu-1|)\right\}}{\left|2[3]_{q}^{n}+(\mu-1)[2]_{q}^{2 n}\right|(2 \lambda+\mu)[3]_{q}^{n}}\right\},
\end{align*}
$$

where $0 \leq \beta<1,0<q<1, \lambda \geq 1, \mu \geq 0$ and $n \in \mathbb{N}_{0}$.
Remark 1.5. By appropriately specializing the parameters in Definition 1.1 and 1.3, we can get several known subclasses of the bi-univalent function class Σ. For example:
(i) For $n=0$ and $q \rightarrow 1^{-}$, we obtain the bi-univalent function classes

$$
\mathcal{H}_{\Sigma}^{1, \mu}(0, \alpha, \lambda)=\mathcal{N}_{\Sigma}^{\mu}(\alpha, \lambda) \quad \text { and } \quad \mathcal{H}_{\Sigma}^{1, \mu}(0, \beta, \lambda)=\mathcal{N}_{\Sigma}^{\mu}(\beta, \lambda)(\text { see }[21]) ;
$$

(ii) For $\mu=1, n=0$ and $q \rightarrow 1^{-}$, we obtain the bi-univalent function classes

$$
\mathcal{H}_{\Sigma}^{1,1}(0, \alpha, \lambda)=\mathcal{B}_{\Sigma}(\alpha, \lambda) \quad \text { and } \quad \mathcal{H}_{\Sigma}^{1,1}(0, \beta, \lambda)=\mathcal{B}_{\Sigma}(\beta, \lambda)(\text { see }[8]) ;
$$

(iii) For $\mu=1$ and $q \rightarrow 1^{-}$we obtain the bi-univalent function classes $\mathcal{H}_{\Sigma}^{1,1}(n, \alpha, \lambda)=\mathcal{B}_{\Sigma}(n, \alpha, \lambda) \quad$ and $\quad \mathcal{H}_{\Sigma}^{1,1}(n, \beta, \lambda)=\mathcal{B}_{\Sigma}(n, \beta, \lambda)($ see $[15]) ;$
(iv) For $\mu=1, n=0, \lambda=1$ and $q \rightarrow 1^{-}$, we obtain the bi-univalent function classes

$$
\mathcal{H}_{\Sigma}^{1,1}(0, \alpha, 1)=\mathcal{H}_{\Sigma}^{\alpha} \quad \text { and } \quad \mathcal{H}_{\Sigma}^{1,1}(0, \beta, 1)=\mathcal{H}_{\Sigma}(\beta)(\operatorname{see}[28]) ;
$$

(v) For $\mu=0, n=0, \lambda=1$ and $q \rightarrow 1^{-}$, we obtain the bi-univalent function classes

$$
\mathcal{H}_{\Sigma}^{1,0}(0, \alpha, 1)=\mathcal{S}_{\Sigma}^{*}(\alpha) \quad \text { and } \quad \mathcal{H}_{\Sigma}^{1,0}(0, \beta, 1)=\mathcal{S}_{\Sigma}^{*}(\beta)(\operatorname{see}[4]) .
$$

This paper is a sequel to some of the aforecited works (especially see [11, 32, 33]). Here we introduce and investigate the general subclass $\mathcal{H}_{\Sigma}^{h, p}(\lambda, \mu, n, q)(0<q<$ $1, \lambda \geq 1, \mu \geq 0$) of the analytic function class \mathcal{A}, which is given by Definition 1.6 below.
Definition 1.6. Let $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be analytic functions and

$$
\min \{\operatorname{Re}(h(z)), \operatorname{Re}(p(z))\}>0 \quad(z \in \mathbb{U}) \quad \text { and } \quad h(0)=p(0)=1
$$

Also let the function f given by (1.1), be in the analytic function class \mathcal{A}. We say that

$$
f \in \mathcal{H}_{\Sigma}^{h, p}(\lambda, \mu, n, q) \quad\left(0<q<1, \lambda \geq 1, \mu \geq 0 \text { and } n \in \mathbb{N}_{0}\right)
$$

if the following conditions satisfied:
(1.16)

$$
f \in \Sigma \text { and }(1-\lambda)\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu}+\lambda\left(D_{q}^{n} f(z)\right)^{\prime}\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu-1} \in h(\mathbb{U})(z \in \mathbb{U})
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu}+\lambda\left(D_{q}^{n} g(w)\right)^{\prime}\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu-1} \in p(\mathbb{U})(w \in \mathbb{U}) \tag{1.17}
\end{equation*}
$$

where the function g is given by (1.9).

$$
\text { If } f \in \mathcal{H}_{\Sigma}^{h, p}(\lambda, \mu, n, q) \text {, then }
$$

$$
\begin{equation*}
f \in \Sigma \text { and }\left|\arg \left((1-\lambda)\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu}+\lambda\left(D_{q}^{n} f(z)\right)^{\prime}\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu-1}\right)\right|<\frac{\alpha \pi}{2} \tag{1.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left((1-\lambda)\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu}+\lambda\left(D_{q}^{n} g(w)\right)^{\prime}\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu-1}\right)\right|<\frac{\alpha \pi}{2} \tag{1.19}
\end{equation*}
$$

or
(1.20) $f \in \Sigma$ and $\operatorname{Re}\left\{(1-\lambda)\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu}+\lambda\left(D_{q}^{n} f(z)\right)^{\prime}\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu-1}\right\}>\beta$
and

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda)\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu}+\lambda\left(D_{q}^{n} g(w)\right)^{\prime}\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu-1}\right\}>\beta \tag{1.21}
\end{equation*}
$$

where the function g is given by (1.9).
Our paper is motivated and stimulated especially by the work of Srivastava et al. [21, 28]. Here we propose to investigate the bi-univalent function subclass $\mathcal{H}_{\Sigma}^{h, p}(\lambda, \mu, n, q)$ of the function class Σ and find estimates on the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the new subclass of the function class Σ using Sălăgean q-differential operator.

2. A Set of General Coefficient Estimates

In this section, we derive estimates on the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in subclass $\mathcal{H}_{\Sigma}^{h, p}(\lambda, \mu, n, q)$ given by Definition 1.6.

Theorem 2.1. Let the function $f(z)$ given by Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{H}_{\Sigma}^{h, p}(\lambda, \mu, n, q)$. Then
(2.1) $\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu)^{2}[2]_{q}^{2 n}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2(2 \lambda+\mu)\left|(\mu-1)[2]_{q}^{2 n}+2[3]_{q}^{n}\right|}}\right\}$
and

$$
\begin{align*}
&\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu)^{2}[2]_{q}^{2 n}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu)[3]_{q}^{n}}\right. \\
&\left.\frac{\left|(\mu-1)[2]_{q}^{2 n}+4[3]_{q}^{n}\right|\left|h^{\prime \prime}(0)\right|+|\mu-1|[2]_{q}^{2 n}\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu)[3]_{q}^{n}\left|(\mu-1)[2]_{q}^{2 n}+2[3]_{q}^{n}\right|}\right\} \tag{2.2}
\end{align*}
$$

where $0<q<1, \lambda \geq 1, \mu \geq 0$ and $n \in \mathbb{N}_{0}$.
Proof. It follows from (1.16) and (1.17) that

$$
\begin{equation*}
(1-\lambda)\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu}+\lambda\left(D_{q}^{n} f(z)\right)^{\prime}\left(\frac{D_{q}^{n} f(z)}{z}\right)^{\mu-1}=h(\mathbb{U}) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu}+\lambda\left(D_{q}^{n} g(w)\right)^{\prime}\left(\frac{D_{q}^{n} g(w)}{w}\right)^{\mu-1}=p(\mathbb{U}) \tag{2.4}
\end{equation*}
$$

Comparing the coefficients of z and z^{2} in (2.3) and (2.4), we have

$$
\begin{equation*}
(\lambda+\mu)[2]_{q}^{n} a_{2}=h_{1}, \tag{2.5}
\end{equation*}
$$

$$
\begin{gather*}
(\mu-1)\left(\lambda+\frac{\mu}{2}\right)[2]_{q}^{2 n} a_{2}^{2}+(2 \lambda+\mu)[3]_{q}^{n} a_{3}=h_{2} \tag{2.6}\\
-(\lambda+\mu)[2]_{q}^{n} a_{2}=p_{1}
\end{gather*}
$$

and

$$
\begin{equation*}
-(2 \lambda+\mu)[3]_{q}^{n} a_{3}+\left(4[3]_{q}^{n}+(\mu-1)[2]_{q}^{2 n}\right)\left(\lambda+\frac{\mu}{2}\right) a_{2}^{2}=p_{2} \tag{2.8}
\end{equation*}
$$

From (2.5) and (2.7), we obtain

$$
\begin{equation*}
h_{1}=-p_{1} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\lambda+\mu)^{2}[2]_{q}^{2 n} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} . \tag{2.10}
\end{equation*}
$$

Also, from (2.6) and (2.8), we find that

$$
\begin{equation*}
\left\{(\mu-1)[2]_{q}^{2 n}+2[3]_{q}^{n}\right\}(2 \lambda+\mu)^{2} a_{2}^{2}=h_{2}+p_{2} . \tag{2.11}
\end{equation*}
$$

Therefore, we find from the equations (2.10) and (2.11) that

$$
\left|a_{2}\right| \leq \sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu)^{2}[2]_{q}^{2 n}}}
$$

and

$$
\left|a_{2}\right| \leq \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2(2 \lambda+\mu)\left|(\mu-1)[2]_{q}^{2 n}+2[3]_{q}^{n}\right|}},
$$

respectively. So we get the desired estimate on the coefficients $\left|a_{2}\right|$ as asserted in (2.1).

Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (2.8) from (2.6), we get

$$
\begin{equation*}
2(2 \lambda+\mu)[3]_{q}^{n} a_{3}-2[3]_{q}^{n}(2 \lambda+\mu) a_{2}^{2}=h_{2}-p_{2} . \tag{2.12}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (2.10) into (2.12), we arrive at

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{2(\lambda+\mu)^{2}[2]_{q}^{2 n}}+\frac{h_{2}-p_{2}}{2(2 \lambda+\mu)[3]_{q}^{n}} .
$$

We thus find that

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\lambda+\mu)^{2}[2]_{q}^{2 n}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu)[3]_{q}^{n}} . \tag{2.13}
\end{equation*}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (2.11) into (2.12), we arrive at

$$
a_{3}=\frac{\left\{(\mu-1)[2]_{q}^{2 n}+4[3]_{q}^{n}\right\} h_{2}+(\mu-1)[2]_{q}^{2 n} p_{2}}{2(2 \lambda+\mu)[3]_{q}^{n}\left\{(\mu-1)[2]_{q}^{2 n}+2[3]_{q}^{n}\right\}} .
$$

Consequently, we have

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|(\mu-1)[2]_{q}^{2 n}+4[3]_{q}^{n}\right|\left|h^{\prime \prime}(0)\right|+|\mu-1|[2]_{q}^{2 n}\left|p^{\prime \prime}(0)\right|}{4(2 \lambda+\mu)[3]_{q}^{n}\left|(\mu-1)[2]_{q}^{2 n}+2[3]_{q}^{n}\right|} . \tag{2.14}
\end{equation*}
$$

This evidently completes the proof of Theorem 2.1.

3. Corollaries and Consequences

By Setting $\mu=1, q \rightarrow 1^{-}$and $n=0$ in Theorem 2.1, we deduce the following consequence of Theorem 2.1.

Corollary 3.1. Let the function $f(z)$ given by Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{B}_{\Sigma}^{h, p}(\lambda)(\lambda \geq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1+\lambda)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda)}}\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(1+\lambda)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda)}, \frac{\left|h^{\prime \prime}(0)\right|}{2(1+2 \lambda)}\right\} \tag{3.2}
\end{equation*}
$$

By Setting $\mu=0, \lambda=1, q \rightarrow 1^{-}$and $n=0$ in Theorem 2.1, we deduce the following.

Corollary 3.2.([5]) Let the function $f(z)$ given by Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{B}_{\Sigma}^{h, p}$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4}}\right\} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}, \frac{3\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}\right\} \tag{3.4}
\end{equation*}
$$

Remark 3.3. Corollary 3.2 is an improvement of the following estimates obtained by Xu et al. [33].

Corollary 3.4.([33]) Let the function $f(z)$ given by Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{B}_{\Sigma}^{h, p}(\lambda)(\lambda \geq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(1+2 \lambda)}} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|h^{\prime \prime}(0)\right|}{2(1+2 \lambda)} \tag{3.6}
\end{equation*}
$$

By Setting $\lambda=1, \mu=1, q \rightarrow 1^{-}$and $n=0$ in Theorem 2.1, we deduce the following Corollary 3.5.

Corollary 3.5.([32]) Let the function $f(z)$ given by Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{H}_{\Sigma}^{h, p}$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12}} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|h^{\prime \prime}(0)\right|}{6} \tag{3.8}
\end{equation*}
$$

4. Concluding Remarks and Observations

The main objective in this paper has been to derive first two Taylor-Maclaurin coefficient estimates for functions belonging to a new subclass $\mathcal{H}_{\Sigma}^{h, p}(\lambda, \mu, n, q)$ of analytic and bi-univalent function in the open unit disk \mathbb{U}. Indeed, by using Sălăgean q-calculus operator, we have successfully determined the first two Taylor-Maclaurin coefficient estimates for functions belonging to a new subclass $\mathcal{H}_{\Sigma}^{h, p}(\lambda, \mu, n, q)$.

By means of corollaries and consequences which we discuss in the preceding section by suitable specializing the parameters λ and μ, we have also shown already that the results presented in this paper would generalize and improve some recent works of Xu et al. [32, 33] and other authors.

Acknowledgements. We thank the referees for their insightful suggestions and scholarly guidance to revise and improve the results as in present form.

References

[1] Ş. Altinkaya and S. Yalçin, Faber polynomial coefficient bounds for a subclass of biunivalent functions, Stud. Univ. Babeş-Bolyai Math., 61(1)(2016), 37-44.
[2] L. D. Branges, A proof of the Bieberbach conjecture, Acta. Math., 154(1985), 137-152.
[3] D. A. Brannan and J. G. Clunie, Aspect of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; July 1-20, 1979), pp. 79-95, Academic Press, New York and London, 1980.
[4] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Mathematical Analysis and its Applications(Kuwait, 1985), 53-60, KFAS Proc. Ser. 3, Pergamon Press, Elsevier science Limited, Oxford, 1988.
[5] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., 43(2)(2013), 59-65.
[6] M. Çağlar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math., 41(2017), 694-706.
[7] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[8] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
[9] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[10] M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14(1990), 77-84.
[11] P. N. Kamble and M. G. Shrigan, Initial coefficient estimates for bi-univalent functions, Far East J. Math., 105(2)(2018), 271-282.
[12] A. Y. Lashin, On certain subclasses of analytic and bi-univalent functions, J. Egyptian Math. Soc., 24(2016), 220-225.
[13] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
[14] E. Netanyahu, The minimal distance of the image boundary from the origin and second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32(1969), 100-112.
[15] S. Porwal and M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc., 21(2013), 190-193.
[16] S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand., 109(1)(2011), 55-70.
[17] G. S. Sălăgean, Subclasses of univalent functions, Complex Analysis - Fifth Romanian Finish Seminar, Bucharest, 1(1983), 362-372.
[18] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), 329-354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
[19] H. M. Srivastava, Ş. Altinkaya and S. Yalçin, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat, 32(2018), 503-516.
[20] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23(2015), 242-246.
[21] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(5)(2013), 831842.
[22] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845.
[23] H. M. Srivastava, S. S. Eker, S. G. Hamadi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc., 44(1)(2018), 149-157.
[24] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform., 41(2015), 153-164.
[25] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B (Engl. Ed.), 36(2016), 863-871.
[26] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28(2017), 693-706.
[27] H. M. Srivastava, S. B. Joshi, S. S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math., 5(2016), 250-258.
[28] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
[29] H. M. Srivastava, F. Müge Sakar and H. Özlem Güney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 32(4)(2018), 1313-1322.
[30] D. Styer and J. Wright, Results on bi-univalent functions, Proc. Amer. Math. Soc., 82(1981), 243-248.
[31] H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö functional problems for some classes of m-fold symmetric bi-univalent functions, J. Math. Inequal., 10(2016), 1063-1092.
[32] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990-994.
[33] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(2012), 11461-11465.

[^0]: * Corresponding Author.

 Received March 7, 2018; revised September 25, 2018; accepted October 2, 2018. 2010 Mathematics Subject Classification: 30C45.
 Key words and phrases: analytic functions, bi-univalent functions, coefficient bounds, Sălăgean q-differential operator, Sălăgean derivative.

