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A RESERCH ON NONLINEAR (p, q)-DIFFERENCE EQUATION

TRANSFORMABLE TO LINEAR EQUATIONS USING

(p, q)-DERIVATIVE†
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Abstract. In this paper, we introduce various first order (p, q)-difference

equations. We investigate solutions to equations which are linear (p, q)-
difference equations and nonlinear (p, q)-difference equations. We also find

some properties of (p, q)-calculus, exponential functions, and inverse func-

tion.
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1. Introduction

For a long time, studies on q-difference equations appeared in intensive works
especially by F. H. Jackson[9], R. D. Carmichael[4], T. E. Mason[7], and other
authors[11]. q-calculus is considered as one of the most useful concepts to study
with special numbers and polynomials. This subject appears in many areas of
mathematics, physics, engineering, and applications including q-combinatorics,
q-arithmetics, q-integrable system, variational q-calculus, and so on(see [1,3,4,7,11]).

For any n ∈ C, the q-number is defined by

[n]q =
1− qn

1− q
, |q| < 1.

In 1991, R. Chakrabarti and R. Jagannathan[5] introduced the (p, q)-number
in order to unify varied forms of q-oscilator algebras in physics literature. Around
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the same time, independently, G. Brodimas, et al. and M. Arik, et al. discovered
the (p, q)-number(see [1,2]). Also around the same time, Wachs and White[12]
introduced the (p, q)-number in mathematics literature by certain combinatorial
problems without any connection to the quantum group related to mathematics
and physics literature.

For any n ∈ C, the (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
,

∣∣∣q
p

∣∣∣ < 1.

Here, we can observe a difference that is q-number don’t have the symmetric
property. It is clear that (p, q)-number possesses the symmetric property, and
this number is q-number when p = 1. In particular, we can see limq→1[n]p,q = n
with p = 1.

Heretofore, many mathematicians have studied (p, q)-calculus including (p, q)-
exponential, integration, series and differentiation from (p, q)-number. (p, q)-
extension of q-number has taken many new conceptions and has advanced since
much properties of (p, q)-number is different from properties of q-number. For
example, R. Jagannathan and K. S. Rao[8] created the (p, q)-extensions of q-
identites in 2006. In [6], R. B. Corcino created the theorem of (p, q)-extension of
binomials coefficients and found various properties which are related to horizon-
tal function, triangular function, and vertica functionl. P. N. Sadjang[10] rep-
resented two appropriate polynomials of the (p, q)-derivative and investigated
some properties of these polynomials. In addition, he discovered two (p, q)-
Talyor formulas of polynomials and dotained the formula of (p, q)-integration by
part. We define some basic notations about (p, q)-calculus which are found in
[2,5,6,8,10,12].

Definition 1.1. We define the (p, q)-derivative operator of any function f ,
also referred to as the Jackson derivative, as follows:

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, x 6= 0,

and Dp,qf(0) = f ′(0).

Since Dp,qz
n = [n]p,qz

n−1, if t(x) =
∑n
k=0 akx

k then

Dp,qt(x) =

n−1∑
k=0

ak+1[k + 1]p,qx
k.

This equation is equivalent to the (p, q)-difference equation in q with known f

Dp,qg(x) = f(x).
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From Definition 1.1, one has

1− Tp,q(
1− q

p

)
x
g(x) = f

(
1

p
x

)
, Tp,qg(x) = g

(
q

p
x

)
.

Thus, we can see that

g(x) =

(
1− q

p

) ∞∑
i=0

T ip,q

{
xf

(
1

p
x

)}

=

(
1− q

p

)
x

∞∑
i=0

(
q

p

)i
f

(
qi

pi+1
x

)
.

If the series in the right hand side of the above is convergent, then we can find
the previous calculus is obviously valid. Let f be an arbitrary function. In [10],
we note that the definition of (p, q)- integral is∫

f(x)dp,qx = (p− q)x
∞∑
k=0

qk

pk+1
f

(
qk

pk+1
x

)
.

Theorem 1.1. This operator,Dp,q, has the following basic properties:

(i) Derivative of a product Dp,q(f(x)g(x)) = f(px)Dp,qg(x) + g(qx)Dp,qf(x)

= g(px)Dp,qf(x) + f(qx)Dp,qg(x).

(ii) Derivative of a ratio Dp,q

(
f(x)

g(x)

)
=
g(qx)Dp,qf(x)− f(qx)Dp,qg(x)

g(px)g(qx)

=
g(px)Dp,qf(x)− f(px)Dp,qg(x)

g(px)g(qx)
.

Definition 1.2. The (p, q)-analogue of (x+ a)n is defined by

(i) (x+ a)np,q =

{
1 if n = 0

(x+ a)(px+ aq) · · · (pn−2x+ aqn−2)(pn−1x+ aqn−1) if n 6= 0
,

(ii) (x+ a)np,q =

n∑
k=0

[
n
k

]
p,q

p(
k
2)q(

n−k
2 )xkan−k,

where

[
n
k

]
p,q

is (p, q)-Gauss Binomial coefficient. In addition, we can see the

notation, ((x,−a); (p, q))n, in other papers. This means ((x,−a); (p, q))n =
(x+ a)np,q .
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Definition 1.3. Let z be any complex numbers with |z| < 1. The two forms
of (p, q)-exponential functions are defined by

ep,q(z) =

∞∑
n=0

p(
n
2) zn

[n]p,q!
,

Ep,q(z) =

∞∑
n=0

q(
n
2) zn

[n]p,q!
.

The useful relation of two forms of (p, q)-exponential functions is taken by

ep,q(z)Ep,q(−z) = 1, Ep,q(z) = ep−1,q−1(z).

Definition 1.4. For n 6= 0, we define

Ep,q
(

z

a+ b

)
=

∞∑
n=0

1

(a+ b)np,q

zn

[n]p,q!
.

We can note that limp,q→1 Ep,q
(

z
a+b

)
= e

z
a+b .

The most important aim of this paper is to find solutions of various first-order
linear or nonlinear differential equations. The paper is organised as follows.
In Section 2, we investigate various cases of first-order linear (p, q)-differential
equations. In Section 3, we derive and illustrate with examples solutions to some
first-order nonlinear (p, q)-differential equations.

2. First order linear (p, q)-difference equations

As in the case of differential or difference equations, first order linear (p, q)-
difference equations are of particular interest in the theory and applications of
(p, q)-difference equations. In this section, we investigate the solution for each
basic type of equations.

We can write a general first order linear (p, q)-difference equation in the form:

Dp,qy(x) = a(x)y(qx) + b(x). (2.1)

This equation is a non homogenous first order equation while the correspoding
homogenous one has

Dp,qy(x) = a(x)y(qx). (2.2)

Theorem 2.1. Consider the form Dp,q(y) = a(x)y(qx). Then, we find

y(x) = y

((
q

p

)N
x

)
N−1∏
i=0

{
1 +

(
1− q

p

)(
q

p

)i
xa

(
qi

pi+1
x

)}

= y(x0)

x∏
k=pq−1x0

{
1 +

(
1− q

p

)
ka

(
k

p

)}
.
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Proof. Applying the definition of Dp,q in the homogenous equation, (2.2), we
have

y(px) = y(qx) + (p− q)xa(x)y(qx)

= {1 + (p− q)xa(x)} y(qx).

By replacing px by x in the above equation, one has

y(x) =

{
1 +

(
1− q

p

)
xa

(
1

p
x

)}
y

(
q

p
x

)
. (2.3)

From (2.3), we get the result below by using the recurrence relation, and the
theorem is proved.

y(x) = y

((
q

p

)N
x

)
N−1∏
i=0

{
1 +

(
1− q

p

)(
q

p

)i
xa

(
qi

pi+1
x

)}

= y(x0)

x∏
k=pq−1x0

{
1 +

(
1− q

p

)
ka

(
k

p

)}
.

�

If N →∞ with 0 < q
p < 1, then we can see q

p → 0 and also find

y(x) = y(0)

∞∏
i=0

{
1 +

(
1− q

p

)(
q

p

)i
xa

(
qi

pi+1
x

)}
.

Corollary 2.1. Consider the equation Dp,q(y) = a(px)y(qx). In this case,
from Theorem 2.1, we can find the solutions

(i) y(x) = y

((
q

p

)N
x

)
N−1∏
i=0

{
1 +

(
1− q

p

)(
q

p

)i
xa

((
q

p

)i
x

)}
.

(ii) y(x) = y(0)

∞∏
i=0

{
1 +

(
1− q

p

)(
q

p

)i
xa

((
q

p

)i
x

)}
.

Example 2.1. Suppose a(x) = p(qk−pk)
(q−p)(qkx−pk)

. Then we can find the following

result,

y(x) =
(−1)ky(0)

p(
k
2)

k−1∏
i=0

(pi − qix).

Solution. First, we can transform a(x) as the follows:

a(x) =

(
q
p

)k
− 1(

q
p − 1

)((
q
p

)k
x− 1

) .
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From Corollary 2.1 (ii), we obtain the following result:

y(x) = y(0)

∞∏
i=0

1 +

(
1− q

p

)(
q

p

)i
x

(
q
p

)k
− 1(

q
p − 1

)((
q
p

)k+i

x− 1

)


= y(0)

∞∏
i=0


(
q
p

)i
x− 1(

q
p

)k+i

x− 1

 =
(−1)ky(0)

p(
k
2)

k−1∏
i=0

(pi − qix).

�

Theorem 2.2. Equation of the form Dp,qy(x) = a(x)y(qx) + b(x) has the
general solution,

y(x) =

∫ x

x0

y0(x)y−1
0 (pt)b(t)dp,qt+ y0(x)c,

where c = y−1
0 (x0)y(x0).

Proof. From variation of constants in equation 2.1, we can get

y(x) = c(x)y0(x),

where c(x) is an unknown function to be determined and y0(x) is a homogenous
solution. By using (p, q)-derivative formula in the above equation, we get

Dp,qy(x) = Dp,qc(x)y0(x)

= y0(px)Dp,qc(x) + c(qx)Dp,qy0(x).

We can also transform the above equation from the given equation.

b(x) = c(qx) {Dp,qy0(x)− a(x)y0(qx)}+ y0(px)Dp,qc(x) = y0(px)Dp,qc(x).

Thus, this equation can be written as

Dp,qc(x) = y−1
0 (px)b(x).

Using the integral formula on both sides, we get

c(x) =

∫ x

x0

y−1
0 (pt)b(t)dp,qt+ c(x0) =

∫ x

x0

y−1
0 (pt)b(t)dp,qt+ c,

where c = c(x0) = y−1
0 (x0)y(x0). Therefore, we find the solution, and the

theorem is completed.

y(x) =

(∫ x

x0

y−1
0 (pt)b(t)dp,qt+ c

)
y0(x)

=

∫ x

x0

y0(x)y−1
0 (pt)b(t)dp,qt+ y0(x)c.

�
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Corollary 2.2. Let Dp,qy(x) = a(px)y(qx) + b(px). Then we get

y(x) =

∫ x

x0

y0(x)y−1
0 (pt)b(pt)dp,qt+ y0(x)c.

Theorem 2.3. Let a be some constant. Then the equation Dp,qy(x) =
ay(px) becomes

y(x) =

∞∑
n=0

C0p
(n2) (ax)n

[n]p,q!
= C0ep,q(ax).

Proof. From the definition of (p, q)-difference, the given equation can be written
as

y(qx) = {1 + (q − p)xa} y(px).

In order to obtain the solution, we put

y(x) =

∞∑
n=0

Cnx
n.

Then. we have

y(qx) =

∞∑
n=0

Cn(qx)n = {1 + (q − p)xa}
∞∑
n=0

Cn(px)n

=

∞∑
n=0

Cn(px)n + (q − p)a
∞∑
n=0

Cnp
nxn+1.

From the above equation, we can write the k-th term as the follows.

Ck = apk−1 p− q
pk − qk

Ck−1.

By using recursive calculation, we get

Cn = C0p
(n2)an

(
n∏
k=1

p− q
pk − qk

)
.

From the definition of [n]p,q and [n]p,q!, we can change this to

Cn = C0p
(n2)an

1

[n]p,q!
.

Therefore, the solution is a (p, q)-exponential function,

y(x) =

∞∑
n=0

C0p
(n2) (ax)n

[n]p,q!
= C0ep,q(ax).

�

Theorem 2.4. An equation of Dp,qy(x) = ay(qx) gives a result of the form

y(x) =

∞∑
n=0

C0q
(n2) (ax)n

[n]p,q!
= C0ep−1,q−1(ax) = C0Ep,q(ax).
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Proof. In the given equation, it is clear that

y(px) = {1 + (p− q)xa} y(qx).

This proof is very similar to the proof of Theorem 2.3, but the result is different.
In other words, the result of Theorem 2.4 is the inverse function of ep,q(x).
Hence, we omit the detailed proof of Theorem 2.4.

�

From Theorem 2.3 and Theorem 2.4, we note that∫
ep,q(apx)dp,qx =

1

a
ep,q(ax),

∫
ep−1,q−1(aqx)dp,qx =

1

a
ep−1,q−1(ax).

Theorem 2.5. LetDp,qy(x) = ay(px), Dp,qz(x) = −a(x)z(qx) and y(x0)z(x0)
= 1. Then we have z(x)y(x) = 1.
Proof. Using the differential formula, we have

Dp,qz(x)y(x) = y(px)Dp,qz(x) + z(qx)Dp,qy(x) = 0.

Therefore, the proof of Theorem 2.5 is complete.

�

Theorem 2.6. The equation of the form Dp,qy(x) = αxy(x) can seek a
solution under the form y(x) =

∑∞
n=0 Cnx

n. Thus, we find the solution

y(x) = C0

∞∑
n=0

(αx2)n

(2)np,q[n]p,q!
= C0Ep,q

(
αx2

2

)
.

Proof. In order to find the solution of equation, we write

Dp,qy(x) =

∞∑
n=1

Cn[n]p,qx
n−1 = α

∞∑
n=0

Cnx
n+1.

By using the coefficients of both sides in the above equation, we observe

C2n = αn
C0

[2n]p,q[2(n− 1)]p,q · · · [2]p,q[1]p,q
and C2n−1 = 0, for n ≥ 1.

Here, we can apply a property of [n]p,q(see [3]).

[2n]p,q[2(n− 1)]p,q · · · [2]p,q[1]p,q = [n]p,q!(2)np,q.

Therefore, we have the solution

y(x) = C0

∞∑
n=0

(αx2)n

(2)np,q[n]p,q!
= C0Ep,q

(
αx2

2

)
,

where Ep,q(αx
2

2 ) is (p, q)-version of e
αx2

2 .

�
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Theorem 2.7. For the equation of the form Dp,qy(x) = ay(px) + b with
x0 = 0, the solution is

y(x) =

(
y(0) +

b

a

)
ep,q(ax)− b

a
.

Proof. Letting y(x) = c(x)y0(x), we get

Dp,qc(x)y0(x) = c(px)Dp,qy0(x) + y0(qx)Dp,qc(x) = ay(px) + b.

From Theorem 2.3, one can write

Dp,qc(x) = y−1
0 (qx)b.

To search for a solution we can write

c(x) = c(0) +
b

a
− b

a
ep−1,q−1(−ax).

Therefore, the result is

y(x) = ep,q(ax)

{
y(0) +

b

a
− b

a
ep−1,q−1(−ax)

}
=

(
y(0) +

b

a

)
ep,q(ax)− b

a
,

and the theorem is completely proved.

�

Theorem 2.8. Consider the equation of the form Dp,qy(x) = ay(qx)+b with
x0 = 0. Its solution is

y(x) =

(
y(0) +

b

a

)
ep−1,q−1(ax)− b

a
.

Proof. To solve the equation we set

y(x) = c(x)y0(x).

By using the result of Theorem 2.2, we can derive

y(x) =

∫ x

x0

y0(x)y−1
0 (pt)b(t)dp,qt+ y0(x)c

= y0(x)

{
b

∫ x

0

y−1
0 (pt)dp,qt+ c

}
= ep−1,q−1(ax)

{
b

∫ x

0

ep,q(−apt)dp,qt+ y(0)

}
=

(
y(0) +

b

a

)
ep−1,q−1(ax)− b

a
.

Thus, the theorem is proved.

�
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3. Nonlinear (p, q)-difference equations transformable to linear
equations

In this section, we are concerned with first order nonlinear (p, q)-difference
equations. The method of solving these equations is using first order linear equa-
tions. We also consider (p, q)-Riccati type equations.

Remark 3.1. Consider equations of the following form:

f

(
Dp,qy(x)

y(px)
, x

)
= 0.

This equation can be transformed into a linear equation in z(x) where z(x) =
Dp,qy(x)
y(x) .

Example 3.1. Solve the equation.

{Dp,qy(x)}2 − y(px)Dp,qy(x)− 6{y(px)}2 = 0

Solution. Clearly, it gives z2(x) − z(x) − 6 = 0 where z(x) =
Dp,qy(x)
y(px) . Thus,

z(x) = 3 and z(x) = −2 or y(x) = c1ep,q(3x) and y(x) = c2ep,q(−2x), respec-
tively.

�

Example 3.2. Solve the equation.

{Dp,qy(x)}2 − y(qx)Dp,qy(x)− 6{y(qx)}2 = 0

Solution. Letting z(x) =
Dp,qy(x)
y(qx) , one has

z2(x)− z(x)− 6 = 0.

Thus, z(x) = 3 and z(x) = −2 or y(x) = cep−1,q−1(3x) and y(x) = cep−1,q−1(−2x),
respectively.

�

Generally, we can derive the result where the solution for the equation of the
form {Dp,qy(x)}2 − (a+ b)y(px)Dp,qy(x) + ab{y(px)}2 = 0 is y(x) = c1ep,q(ax),
y(x) = c2ep,q(bx). We can also find the solution of the form {Dp,qy(x)}2 − (a+
b)y(qx)Dp,qy(x)+ab{y(qx)}2 = 0 is the inverse function of the (p, q)-exponential
function.

Remark 3.2. Suppose (p, q)-Riccati type equation is as the follows:

Dp,qy(x) = a(x)y(qx) + b(x)y(px)y(qx).

If we set y(x) = 1
z(x) in order to solve the equation, we can find this following

result:

Dp,qz(x) = −{a(x)z(px) + b(x)}.
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Example 3.3. Calculate the following equation.

y(qx)y(px)lnpq−1 − y(qx) + y(px) = 0

Solution. We can make z(px)− z(qx) = lnp− lnq from y(x) = 1
z(x) . According

to the (p, q)-differential definition, one has

Dp,qz(x) =
lnp− lnq

(p− q)x
.

We can see z(x) = lnx by using the integral. Hence, the solution is y(x) = 1
lnx .

�

Remark 3.3. Let c1, c2 be some constants. Equation of the form g(x) =
{y(px)}c1 {y(qx)}c2 becomes the following equation by using ln function.

c1lny(px) + c2lny(qx) = lng(x).

Setting z(x) = lny(x) we obtain

c1z(px) + c2z(qx) = lng(x).

Example 3.4. Contemplate the equation.

y3(px) = ex
5

y(qx)

Solution. By using ln function in both sides, one has

3lny(px)− lny(qx) = x5.

We also put lny(x) = z(x) and represent

3z(px)− z(qx) = x5. (3.1)

Thus, we obtain the homogenous solution,

z(x) = cx
ln3

lnp−1q .

Now we will find particular solutions from Equation (3.1). Using the operator
Tp,q, this equation can transform as follows:

3

(
1− 1

3
Tp,q

)
z(x) = x5

Calculating the equation, one has

z(x) =
1

3

(
1− 1

3
Tp,q

)−1

x5 =
1

3

∞∑
i=0

(
1

3

)i(
q

p
x

)5i

=
p5x5

3p5 − q5
.

We can find

z(x) = cx
ln3

lnp−1q +
(px)5

3p5 − q5
.

Hence, we find to solution

y(x) = exp

(
= cx

ln3

lnp−1q +
(px)5

3p5 − q5

)
.

�
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Remark 3.4. Consider the equation of the form Dp,qy(x) = f(x). From the
definition of (p, q)-differential equation we have

y(x)− y
(
q

p
x

)
= (p− q)1

p
xf

(
1

p
x

)
.

Thus, we have the general solution,

y(x) = (p− q)1

p
(1− Tp,q)−1xf

(
1

p
x

)
=

(
1− q

p

)
x

∞∑
i=0

(
q

p

)i
f

(
qi

pi+1
x

)
.

Example 3.5. Solve the equation y(qx)− ay(px) = h(x).
Solution. From Remark 3.4, we can find

y(x) = −1

a

(
1− 1

a
Tp,q

)−1

h

(
1

p
x

)
= −

∞∑
i=0

(
1

a

)i+1

h

(
qi

pi+1
x

)
.

�
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