DOI QR코드

DOI QR Code

PARTIAL SUMS AND NEIGHBORHOODS OF JANOWSKI-TYPE SUBCLASSES OF MEROMORPHIC FUNCTIONS

  • Abdullah Alatawi (Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Department of Mathematics, University of Tabuk) ;
  • Maslina Darus (Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
  • Received : 2023.05.09
  • Accepted : 2023.08.21
  • Published : 2023.09.30

Abstract

The paper presents the introduction of a novel linear derivative operator for meromorphic functions that are linked with q-calculus. Using the linear derivative operator, a new category of meromorphic functions is generated in the paper. We obtain sufficient conditions and show some properties of functions belonging to these subclasses. The partial sums of its sequence and the q-neighborhoods problem are solved.

Keywords

References

  1. A. Alatawi, M. Darus and S. Sivasubramanian, Generalised subclasses of meromorphically q-starlike function using the Janowski functions, Mathematical Foundations of Computing, 2023. https://doi.org/10.3934/mfc.2023021. 
  2. A. Alatawi, M. Darus, B. Alamri, Applications of Gegenbauer polynomials for subfamilies of bi-univalent functions involving a Borel distribution-type Mittag-Leffler function, Symmetry. 15 (2023), 785. 
  3. O. Altintas and S. Owa, Neighborhoods of cartain analytic functions with negative coefficients, International Journal of Mathematics and Mathematical Sciences. 19 (1996), 797-800.  https://doi.org/10.1155/S016117129600110X
  4. J. Clune, On meromorphic Schlicht functions, Journal of the London Mathematical Society. 1 (1959), 215-216.  https://doi.org/10.1112/jlms/s1-34.2.215
  5. M. Darus and R.W. Ibrahim, On partial sums of generalized differential operator, Proc, Pakistan Acad. Sci. 46 (2009), 209-215. 
  6. S. Elhaddad, H. Aldweby and M. Darus, Neighborhoods of certain classes of analytic functions defined by a generalized differential operator involving Mittag-Leffler function, Acta Universitatis Apulensis. 18 (2018), 1-10. 
  7. G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge university press, 2004. 
  8. A.W. Goodman, Univalent functions and non analytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.  https://doi.org/10.1090/S0002-9939-1957-0086879-9
  9. S.H. Hadi, M. Darus and A. Alb Lupas, A class of Janowski-type (p, q)-convex harmonic functions involving a generalized q-Mittag-Leffler function, Axioms. 12 (2023), 190. 
  10. F.H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh. 46 (1909), 253-281.  https://doi.org/10.1017/S0080456800002751
  11. F.H. Jackson, On q-definite integrals, The Quarterly Journal of Pure and Applied Mathematics. 41 (1910), 193-203. 
  12. W. Janowski, Some extremal problems for certain families of analytic functions, Annales Polonici Mathematici. 28 (1973), 297-326.  https://doi.org/10.4064/ap-28-3-297-326
  13. V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002. 
  14. V. Karunakaran, On a class of meromorphic starlike functions in the unit disc, Mathematical chronicle. 4 (1974),112-121. 
  15. G. Murugusundaramoorthy and S.V.S. Velayudam, Neighborhoods and Partial sums of meromorphic Univalent Functions, Mapana Journal of Sciences. 4 (2005), 22-31.  https://doi.org/10.12723/mjs.7.4
  16. J.E. Miller, Convex meromorphic mappings and related functions, Proceedings of the American Mathematical Society. 25 (1970), 220-228.  https://doi.org/10.1090/S0002-9939-1970-0259098-7
  17. A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Matematicki Vesnik. 65 (2013), 454-465. 
  18. S. Mahmood, Q.Z. Ahmad, H.M. Srivastava, N. Khan, B. Khan, and M. Tahir, A certain subclass of meromorphically q-starlike functions associated with the Janowski functions, Journal of Inequalities and Applications. (2019), 01-11. 
  19. L.M. Morga, Meromorphic multivalent functions with positive coefficients, Mathematica Japonica. 35 (1990), 01-11. 
  20. C. Pommerenke, On meromorphic starlike functions, Pacific Journal of Mathematics. 13 (1963), 221-235.  https://doi.org/10.2140/pjm.1963.13.221
  21. W.C. Royster, Meromorphic starlike multivalent functions, Transactions of the American Mathematical Society. 107 (1963), 300-308.  https://doi.org/10.1090/S0002-9947-1963-0148895-5
  22. T.M. Seoudy and M.K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, Jornal of Mathematical Inequalities. 10 (2016), 135-145.  https://doi.org/10.7153/jmi-10-11
  23. A. S. Shinde, R. N. Ingle and P. T. Reddy, On Certain Subclass Of Meromorphic Functions With Positive Coefficients, Palestine Journal of Mathematics. 10 (2021),685-693. 
  24. H.M. Srivastava, H.M. Hossen and M.K. Aouf, A unified presentation of some classes of meromorphically multivalent functions, Comput. Math. Appl. 38 (1996), 63-70.  https://doi.org/10.1016/S0898-1221(99)00285-0
  25. H. Silverman, Neighborhoods of a classes of analytic function, Far East J. Math.Sci. 3 (1995), 165-169. 
  26. H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), 221-227.  https://doi.org/10.1006/jmaa.1997.5361
  27. H.M. Srivastava, S.H. Hadi and M. Darus, Some subclasses of p-valent γ-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117 (2023), 65. 
  28. H. Tang, H. Zayed and A. Mostafa and M. Aouf, Fekete-Szego Problems for Certain Classes of Meromorphic Functions Using q-Derivative Operator, Journal of Mathematical Research with Applications. 38 (3) (2018), 236-246. http://dx.doi.org/10.3770/j.issn:2095-2651.2018.03.002