Nonlinear Functional Analysis and Applications
Vol. 26, No. 1 (2021), pp. 71-81
ISSN: 1229-1595(print), 2466-0973(online)
https://doi.org/10.22771/nfaa.2021.26.01.05
http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright © 2021 Kyungnam University Press

MAJORIZATION PROBLEMS FOR UNIFORMLY STARLIKE FUNCTIONS BASED ON RUSCHEWEYH $q-$ DIFFERENTIAL OPERATOR RELATED WITH EXPONENTIAL FUNCTION

K. Vijaya ${ }^{1}$, G. Murugusundaramoorthy ${ }^{2}$ and N. E. Cho ${ }^{3}$
${ }^{1}$ School of Advanced Sciences
Vellore Institute of Technology, Vellore - 632014, India
e-mail: kvijaya@vit.ac.in
${ }^{2}$ School of Advanced Sciences
Vellore Institute of Technology, Vellore - 632014, India
e-mail: gmsmoorthy@yahoo.com
${ }^{3}$ Department of Applied Mathematics
Pukyong National University, Busan 48513, Korea
e-mail: necho@pknu.ac.kr

Abstract

The main object of this present paper is to study some majorization problems for certain classes of analytic functions defined by means of q-calculus operator associated with exponential function.

1. Introduction

Let \mathcal{A} be the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

[^0]which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. For given $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{A}$, the Hadamard product of f and g is defined by
$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z)
$$

For two analytic functions $f, g \in \mathcal{A}$, we say that f is subordinate to g, denoted by $f \prec g$, if there exists a Schwarz function $\omega(z)$ which is analytic in \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1$ for all $z \in \mathbb{U}$, such that $f(z)=g(\omega(z))$ for $z \in \mathbb{U}$. Note that, if the function g is univalent in \mathbb{U}, due to Miller and Mocanu [6], we have

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

If f and g are analytic functions in \mathbb{U}, following MacGregor [5], we say that f is majorized by g in \mathbb{U}, that is $f(z) \ll g(z)(z \in \mathbb{U})$ if there exists a function $\phi(z)$, analytic in \mathbb{U}, such that

$$
|\phi(z)|<1 \text { and } f(z)=\phi(z) g(z) \quad(z \in \mathbb{U}) .
$$

It is of interest to note that the notion of majorization is closely related to the concept of quasi-subordination between analytic functions.

Now we recall here the notion of q-operator that is, q-difference operator that play vital role in the theory of hypergeometric series, quantum physics and in the operator theory. The application of q-calculus was initiated by Jackson [3], recently Kanas and Răducanu [4] have used the fractional q calculus operators in investigations of certain classes of functions which are analytic in \mathbb{U}.

Let $0<q<1$. For any non-negative integer n, the q-integer number n is defined by

$$
\begin{equation*}
[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+\cdots+q^{n-1}, \quad[0]_{q}=0 \tag{1.2}
\end{equation*}
$$

In general, we will denote

$$
[x]_{q}=\frac{1-q^{x}}{1-q}
$$

for a non-integer number x. Also the q-number shifted factorial is defined by

$$
\begin{equation*}
[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q}, \quad[0]_{q}!=1 . \tag{1.3}
\end{equation*}
$$

Clearly,

$$
\lim _{q \rightarrow 1^{-}}[n]_{q}=n \quad \text { and } \quad \lim _{q \rightarrow 1^{-}}[n]_{q}!=n!
$$

For $0<q<1$, the Jackson's q-derivative operator (or q-difference operator) of a function $f \in \mathcal{A}$ given by (1.1) defined as follows [3]:

$$
\mathfrak{D}_{q} f(z)=\left\{\begin{array}{ccc}
\frac{f(z)-f(q z)}{(1-q) z} & \text { for } & z \neq 0 \tag{1.4}\\
f^{\prime}(0) & \text { for } & z=0
\end{array}\right.
$$

$\mathfrak{D}_{q}^{0} f(z)=f(z)$, and $\mathfrak{D}_{q}^{m} f(z)=\mathfrak{D}_{q}\left(\mathfrak{D}_{q}^{m-1} f(z)\right), m \in \mathbb{N}=\{1,2, \ldots\}$. From (1.4), we have

$$
\begin{equation*}
\mathfrak{D}_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1} \quad(z \in \mathbb{U}), \tag{1.5}
\end{equation*}
$$

where $[n]_{q}$ is given by (1.2).
For a function $\psi(z)=z^{n}$, we obtain

$$
\mathfrak{D}_{q} \psi(z)=\mathfrak{D}_{q} z^{n}=\frac{1-q^{n}}{1-q} z^{n-1}=[n]_{q} z^{n-1}
$$

and

$$
\lim _{q \rightarrow 1^{-}} \mathfrak{D}_{q} \psi(z)=\lim _{q \rightarrow 1^{-}}\left([n]_{q} z^{n-1}\right)=n z^{n-1}=\psi^{\prime}(z)
$$

where ψ^{\prime} is the ordinary derivative.
Let $t \in \mathbb{R}$ and $n \in \mathbb{N}$. The q-generalized Pochhammer symbol is defined by

$$
\begin{equation*}
[t ; n]_{q}=[t]_{q}[t+1]_{q}[t+2]_{q} \cdots[t+n-1]_{q} \tag{1.6}
\end{equation*}
$$

and for $t>0$ the q-gamma function is defined by

$$
\begin{equation*}
\Gamma_{q}(t+1)=[t]_{q} \Gamma_{q}(t) \quad \text { and } \quad \Gamma_{q}(1)=1 . \tag{1.7}
\end{equation*}
$$

Using the q-difference operator, Kannas and Raducanu [4] defined the Ruscheweyh q-differential operator as below: For $f \in \mathcal{A}$,

$$
\begin{equation*}
\mathcal{R}_{q}^{\delta} f(z)=f(z) * F_{q, \delta+1}(z) \quad(\delta>-1, z \in \mathbb{U}) \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{q, \delta+1}(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma_{q}(n+\delta)}{[n-1]_{q}!\Gamma_{q}(1+\delta)} z^{n}=z+\sum_{n=2}^{\infty} \frac{[\delta+1 ; n-1]_{q}}{[n-1]_{q}!} z^{n} . \tag{1.9}
\end{equation*}
$$

Making use of (1.8) and (1.9), we have

$$
\begin{equation*}
\mathcal{R}_{q}^{\delta} f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma_{q}(n+\delta)}{[n-1]_{q}!\Gamma_{q}(1+\delta)} a_{n} z^{n} \quad(z \in \mathbb{U}) . \tag{1.10}
\end{equation*}
$$

$$
\begin{aligned}
\mathcal{R}_{q}^{0} f(z) & =f(z), \\
\mathcal{R}_{q}^{1} f(z) & =z \mathfrak{D}_{q} f(z), \\
\mathcal{R}_{q}^{m} f(z) & =\frac{z \mathfrak{D}_{q}^{m}\left(z^{m-1} f(z)\right)}{[m]_{q}!} \quad(m \in \mathbb{N}) .
\end{aligned}
$$

Also we have

$$
\begin{equation*}
\mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} f(z)\right)=1+\sum_{n=2}^{\infty} \Theta_{n}(q, \delta) a_{n} z^{n-1} \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Theta_{n}:=\Theta_{n}(q, \delta)=\frac{[n]_{q} \Gamma_{q}(n+\delta)}{[n-1]_{q}!\Gamma_{q}(1+\delta)} \tag{1.12}
\end{equation*}
$$

It is easy to check that

$$
\begin{equation*}
z \mathfrak{D}_{q}\left(F_{q, \delta+1}(z)\right)=\left(1+\frac{[\delta]_{q}}{q^{\delta}}\right) F_{q, \delta+2}(z)-\frac{[\delta]_{q}}{q^{\delta}} F_{q, \delta+1}(z) \quad(z \in \mathbb{U}) \tag{1.13}
\end{equation*}
$$

Making use of (1.8)-(1.13) and the properties of Hadamard product, we obtain the following equality

$$
\begin{equation*}
z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} f(z)\right)=\left(1+\frac{[\delta]_{q}}{q^{\delta}}\right) \mathcal{R}_{q}^{1+\delta} f(z)-\frac{[\delta]_{q}}{q^{\delta}} \mathcal{R}_{q}^{\delta} f(z) \quad(z \in \mathbb{U}) \tag{1.14}
\end{equation*}
$$

From (1.10), we note that

$$
\lim _{q \rightarrow 1^{-}} F_{q, \delta+1}(z)=\frac{z}{(1-z)^{\delta+1}}, \quad \lim _{q \rightarrow 1^{-}} \mathcal{R}_{q}^{\delta} f(z)=f(z) * \frac{z}{(1-z)^{\delta+1}}
$$

Thus, when $q \rightarrow 1^{-}$we can say that Ruscheweyh q-differential operator reduces to the differential operator defined by Ruscheweyh [9] and (1.14) gives the well-known recurrent formula for Ruscheweyh differential operator.

Majorization problems for the class $\mathcal{S}^{*}=\mathcal{S}^{*}(0)$ had been investigated by MacGregor [5], further Altintas et al. [1] investigated a majorization problem for $\mathcal{S}(\gamma)$ the class of starlike functions of complex order $\gamma(\gamma \in \mathbb{C} \backslash\{0\})$, and Goyal and Goswami [2] generalized these results for the class of analytic functions involving fractional operator. Very lately, Tang and Deng [12] considered majorization properties for multivalent analytic functions related to the Srivastava-Khairnar-More operator and exponential function.

In this paper, using Ruscheweyh q-differential operator defined by (1.10) and motivated by recent works of [8], we define a new subclass of uniformly starlike functions associated with q-calculus operator, which are subordinate to exponential function, and investigate a majorization problem. Further we point out some special cases of our result.

Definition 1.1. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{R} \mathcal{S}_{q}^{\delta}\left(\beta, e^{z}\right)$, if and only if

$$
\begin{equation*}
\left[\frac{z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} f(z)\right)}{\mathcal{R}_{q}^{\delta} f(z)}-\beta\left|\frac{z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} f(z)\right)}{\mathcal{R}_{q}^{\delta} f(z)}-1\right|\right] \prec e^{z}, \tag{1.15}
\end{equation*}
$$

where $\delta>-1, \beta>0$ and $z \in \mathbb{U}$.
For $\beta=0$ we have $\mathcal{R} \mathcal{S}_{q}^{\delta}\left(\beta, e^{z}\right) \equiv \mathcal{R} \mathcal{S}_{q}^{\delta}\left(e^{z}\right)$:

$$
\frac{z \mathfrak{P}_{q}\left(\mathcal{R}_{q}^{\delta} f(z)\right)}{\mathcal{R}_{q}^{\delta} f(z)} \prec e^{z}
$$

where $\delta>-1, \beta>0$ and $z \in \mathbb{U}$.
Further by taking $q \rightarrow 1^{-}$and $\delta=0$ we have $\mathcal{R} \mathcal{S}_{q}^{\delta}\left(e^{z}\right) \equiv \mathcal{S}^{*}\left(e^{z}\right)$:

$$
\frac{z f^{\prime}(z)}{f(z)} \prec e^{z} \quad(z \in \mathbb{U})
$$

2. A majorization problem for the class $\mathcal{R} \mathcal{S}_{q}^{\delta}\left(\beta, e^{z}\right)$

We state the following q-analogue of the result given by Nehari (cf. [7]) and Selvakumaran et al. [10].

Lemma 2.1. If the function $\phi(z)$ is analytic and $|\phi(z)|<1$ in \mathbb{U}, then

$$
\begin{equation*}
\left|\mathfrak{D}_{q} \phi(z)\right| \leq \frac{1-|\phi(z)|^{2}}{1-|z|^{2}} . \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Let the function $f \in \mathcal{A}$ and suppose that $g \in \mathcal{R} \mathcal{S}_{q}^{\delta}\left(\beta, e^{z}\right)$. If $\mathcal{R}_{q}^{\delta} f(z)$ is majorized by $\mathcal{R}_{q}^{\delta} g$ in \mathbb{U}, then

$$
\begin{equation*}
\left|\mathcal{R}_{q}^{\delta+1} f(z)\right| \leq\left|\mathcal{R}_{q}^{\delta+1} g(z)\right| \quad\left(|z| \leq r_{1}\right) \tag{2.2}
\end{equation*}
$$

where $r_{1}=r_{1}(\delta, \beta)$, is the smallest positive root of the equation

$$
\begin{equation*}
r^{2} q^{\delta} e^{r}-r^{2}\left\{[\delta]_{q}-\left([\delta]_{q}+q^{\delta}\right) \beta\right\}-q^{\delta} e^{r}-2 r q^{\delta}(1+\beta)+\left\{[\delta]_{q}-\left([\delta]_{q}+q^{\delta}\right) \beta\right\}=0, \tag{2.3}
\end{equation*}
$$

where $[\delta]_{q}>\left([\delta]_{q}+q^{\delta}\right) \beta+q^{\delta} e$ and $\beta \geq 0$.

Proof. Since $g \in \mathcal{R} \mathcal{S}_{q}^{\delta}\left(\beta, e^{z}\right)$, we find from (1.15) that

$$
\begin{equation*}
\left[\left(\frac{z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} g(z)\right)}{\mathcal{R}_{q}^{\delta} g(z)}\right)-\beta\left|\frac{z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} g(z)\right)}{\mathcal{R}_{q}^{\delta} g(z)}-1\right|\right]=e^{w(z)} \tag{2.4}
\end{equation*}
$$

where $w(z)=c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots$ is analytic in \mathbb{U}, with $w(0)=0$ and $|w(z)| \leq|z|$ for all $z \in \mathbb{U}$. Letting

$$
\varpi=\frac{z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} g(z)\right)}{\mathcal{R}_{q}^{\delta} g(z)}
$$

in (2.4), we have

$$
\varpi-\beta|\varpi-1|=e^{w(z)}
$$

which implies

$$
\varpi=\frac{e^{w(z)}-\beta e^{-i \varphi}}{1-\beta e^{-i \varphi}}
$$

This is, from (2.4), we get

$$
\begin{equation*}
\frac{z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} g(z)\right)}{\mathcal{R}_{q}^{\delta} g(z)}=\frac{e^{w(z)}-\beta e^{-i \varphi}}{1-\beta e^{-i \varphi}} \tag{2.5}
\end{equation*}
$$

Now, by applying the relation (1.14) in (2.5), we get

$$
\begin{equation*}
\frac{\mathcal{R}_{q}^{\delta+1} g(z)}{\mathcal{R}_{q}^{\delta} g(z)}=\frac{[\delta]_{q}-\left([\delta]_{q}+q^{\delta}\right) \beta e^{-i \varphi}+q^{\delta} e^{w(z)}}{\left([\delta]_{q}+q^{\delta}\right)\left(1-\beta e^{-i \varphi}\right)} \tag{2.6}
\end{equation*}
$$

which yields that

$$
\begin{equation*}
\left|\mathcal{R}_{q}^{\delta} g(z)\right| \leq \frac{\left([\delta]_{q}+q^{\delta}\right)(1+\beta)}{[\delta]_{q}-\left([\delta]_{q}+q^{\delta}\right) \beta-q^{\delta} e^{|z|}}\left|\mathcal{R}_{q}^{\delta+1} g(z)\right| . \tag{2.7}
\end{equation*}
$$

Since $\mathcal{R}_{q}^{\delta} f$ is majorized by $\mathcal{R}_{q}^{\delta} g(z)$ in \mathbb{U}, we have

$$
\mathcal{R}_{q}^{\delta} f(z)=\phi(z) \mathcal{R}_{q}^{\delta} g(z) .
$$

By applying q-differentiation with respect to z, we get

$$
\begin{equation*}
z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} f(z)=z \mathfrak{D}_{q}(\phi(z)) \mathcal{R}_{q}^{\delta} g(z)+z \phi(z) \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} g(z)\right)\right. \tag{2.8}
\end{equation*}
$$

Noting the fact that Schwarz function $\phi(z)$ satisfies the q-analogue of the result given by Nehari (cf. [7]) proved in Lemma 2.1,

$$
\begin{equation*}
\left|\mathfrak{D}_{q} \phi(z)\right| \leq \frac{1-|\phi(z)|^{2}}{1-|z|^{2}} \tag{2.9}
\end{equation*}
$$

and using (1.14), (2.7) and (2.9) in (2.8), we have

$$
\left|\mathcal{R}_{q}^{\delta+1} f(z)\right| \leq\left(|\phi(z)|+\left(\frac{1-|\phi(z)|^{2}}{1-|z|^{2}}\right) \frac{|z| q^{\delta}(1+\beta)}{[\delta]_{q}-\left([\delta]_{q}+q^{\delta}\right) \beta-q^{\delta} e^{|z|}}\right)\left|\mathcal{R}_{q}^{\delta+1} g(z)\right| .
$$

Setting $|z|=r$ and $|\phi(z)|=\rho(0 \leq \rho \leq 1)$, the above inequality leads us to the inequality

$$
\begin{equation*}
\left|\mathcal{R}_{q}^{\delta+1} f(z)\right| \leq\left(\rho+\left(\frac{1-\rho^{2}}{1-r^{2}}\right) \frac{r q^{\delta}(1+\beta)}{[\delta]_{q}-\left([\delta]_{q}+q^{\delta}\right) \beta-q^{\delta} e^{r}}\right)\left|\mathcal{R}_{q}^{\delta+1} g(z)\right| . \tag{2.10}
\end{equation*}
$$

That is,

$$
\left|\mathcal{R}_{q}^{\delta+1} f(z)\right| \leq \Theta_{1}(r, \rho)\left|\mathcal{R}_{q}^{\delta+1} g(z)\right|
$$

where the function $\Theta_{1}(r, \rho)$ is given by

$$
\Theta_{1}(r, \rho)=\rho+\frac{r\left(1-\rho^{2}\right) q^{\delta}(1+\beta)}{\left(1-r^{2}\right)\left\{[\delta]_{q}-\left([\delta]_{q}+q^{\delta}\right) \beta-q^{\delta} e^{r}\right\}} .
$$

In order to determine the bound of $\Theta_{1}(r, \rho)$, we have to choose

$$
\begin{aligned}
r_{1} & =\max \left\{r \in[0,1): \Theta_{1}(r, \rho) \leq 1, \rho \in[0,1]\right\} \\
& =\max \left\{r \in[0,1): \Theta_{2}(r, \rho) \geq 0, \rho \in[0,1]\right\}
\end{aligned}
$$

where

$$
\Theta_{2}(r, \rho)=\left(1-r^{2}\right)\left\{[\delta]_{q}-\left([\delta]_{q}+q^{\delta}\right) \beta-q^{\delta} e^{r}\right\}-r(1+\rho) q^{\delta}(1+\beta)
$$

Obviously, for $\rho=1$, the function $\Theta_{2}(r, \rho)$ takes its minimum value, namely

$$
\min \left\{\Theta_{2}(r, \rho): \rho \in[0,1]\right\}=\Theta_{2}(r, 1)=\Theta_{2}(r)
$$

where

$$
\Theta_{2}(r)=\left(1-r^{2}\right)\left\{[\delta]_{q}-\left([\delta]_{q}+q^{\delta}\right) \beta-q^{\delta} e^{r}\right\}-2 r q^{\delta}(1+\beta)
$$

Furthermore, if $\Theta_{2}(0)=[\delta]_{q}>\left([\delta]_{q}+q^{\delta}\right) \beta+q^{\delta} e$ and $\Theta_{2}(1)=-2 q^{\delta}(1+$ $\beta)<0$, then there exists r_{1} such that $\Theta_{2}(r) \geq 0$ for all $r \in\left[0, r_{1}\right]$, where $r_{1}=r_{1}(\delta, \beta)$, the smallest positive root of the equation (2.3). This completes the proof.

Putting $\beta=0$ and $\rho=1$ in Theorem 2.2, we have the following corollary:
Corollary 2.3. Let the function $f \in \mathcal{A}$ and suppose that $g \in \mathcal{R} \mathcal{S}_{q}^{\delta}\left(e^{z}\right)$. If $\mathcal{R}_{q}^{\delta} f$ is majorized by $\mathcal{R}_{q}^{\delta} g$ in \mathbb{U}, then

$$
\begin{equation*}
\left|\mathcal{R}_{q}^{\delta+1} f(z)\right| \leq\left|\mathcal{R}_{q}^{\delta+1} g(z)\right|, \quad|z| \leq r_{2} \tag{2.11}
\end{equation*}
$$

where $r_{2}=r_{2}(\delta)$, is the smallest positive root of the equation

$$
\begin{equation*}
r^{2} q^{\delta} e^{r}-r^{2}[\delta]_{q}-q^{\delta} e^{r}-2 r q^{\delta}+[\delta]_{q}=0 \tag{2.12}
\end{equation*}
$$

For $\beta=0, q \rightarrow 1^{-}$and $\delta=0$, Corollary 2.3 reduces to the following result:
Corollary 2.4. Let the function $f \in \mathcal{A}$ be analytic and univalent in the open unit disk \mathbb{U} and suppose that $g \in \mathcal{S}^{*}\left(e^{z}\right)$. If f is majorized by g in \mathbb{U}, then

$$
\left|f^{\prime}(z)\right| \leq\left|g^{\prime}(z)\right| \quad\left(|z| \leq r_{3}\right)
$$

where r_{3} is the smallest positive root of $r^{2} e^{r}-2 r-e^{r}=0$.

3. A majorization problem for the class $\mathcal{R}(\mu, \tau)$

Due to Alitintas et al. [1], we recall the definition of the function class $\mathcal{R}(\mu, \tau)$, the class of functions h of the form

$$
\begin{equation*}
h(z)=1-\sum_{n=1}^{\infty} c_{n} z^{n} \quad\left(c_{n} \geq 0 ; z \in \mathbb{U}\right) \tag{3.1}
\end{equation*}
$$

which are analytic in \mathbb{U} and satisfy the inequality

$$
\left|h(z)+\mu z h^{\prime}(z)-1\right|<|\tau| \quad(\tau \in \mathbb{C} \backslash\{0\} ; \Re(\mu) \geq 0)
$$

Further we recall the following lemmas, which will be required in our investigation of the majorization problem for the class $\mathcal{R}(\mu, \tau)$.
Lemma 3.1. ([1]) If the function h defined by (3.1) is in the class $\mathcal{R}(\mu, \tau)$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} \leq \frac{|\tau|}{1+\Re(\mu)} \tag{3.2}
\end{equation*}
$$

Lemma 3.2. ([1]) If the function h defined by is in the class $\mathcal{R}(\mu, \tau)$, then

$$
\begin{equation*}
1-\frac{|\tau|}{1+\Re(\mu)}|z| \leq|h(z)| \leq 1+\frac{|\tau|}{1+\Re(\mu)}|z| \quad(z \in \mathbb{U}) . \tag{3.3}
\end{equation*}
$$

Theorem 3.3. Let the function f and g be analytic in \mathbb{U} and suppose that the function g is normalized and also satisfies the following inclusion property:

$$
\left(\frac{z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} g(z)\right)}{\mathcal{R}_{q}^{\delta} g(z)}\right) \in \mathcal{R}(\mu, \tau)
$$

If $\mathcal{R}_{q}^{\delta} f$ is majorized by $\mathcal{R}_{q}^{\delta} g$ in \mathbb{U}, then

$$
\begin{equation*}
\left|\mathcal{R}_{q}^{\delta+1} f(z)\right| \leq\left|\mathcal{R}_{q}^{\delta+1} g(z)\right| \quad\left(|z| \leq r_{4}\right), \tag{3.4}
\end{equation*}
$$

where $r_{4}=r_{4}(\tau, \mu, \delta)$ is the root of the cubic equation

$$
\begin{align*}
& q^{\delta}|\tau| r^{3}-\left\{\left(q^{\delta}-[\delta]_{q}\right)(1+\Re(\mu))-2|\tau|\right\} r^{2} \\
& \quad-\left[2(1+\Re(\mu))+q^{\delta}|\tau|\right] r+\left(q^{\delta}-[\delta]_{q}\right)[1+\Re(\mu)]=0 \tag{3.5}
\end{align*}
$$

which lies in the interval $(0,1)$ and $\left(q^{\delta}-[\delta]_{q}\right)(1+\Re(\mu))>0$.
Proof. For an appropriately normalized analytic function g satisfying the inclusion property, we find from the assertion of Lemma 3.2 that

$$
\begin{equation*}
\left|\frac{z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} g(z)\right)}{\mathcal{R}_{q}^{\delta} g(z)}\right| \geq 1-\frac{|\tau|}{1+\Re(\mu)} r \quad(|z|=r, 0<r<1) \tag{3.6}
\end{equation*}
$$

or, equivalently, that

$$
\begin{equation*}
\left|\mathcal{R}_{q}^{\delta} g(z)\right| \leq \frac{\left(q^{\delta}+[\delta]_{q}\right)(1+\Re(\mu)-|\tau| r)}{\left(q^{\delta}-[\delta]_{q}\right)(1+\Re(\mu))-q^{\delta}|\tau| r}\left|\left(\mathcal{R}_{q}^{\delta+1} g(z)\right)\right| \quad(|z|=r, 0<r<1) \tag{3.7}
\end{equation*}
$$

Since

$$
\mathcal{R}_{q}^{\delta} f(z) \ll \mathcal{R}_{q}^{\delta} g(z) \quad(z \in \mathbb{U})
$$

there exists an analytic function ϕ such that

$$
\mathcal{R}_{q}^{\delta} f(z)=\phi(z) \mathcal{R}_{q}^{\delta} g(z) \text { and } \quad|\phi(z)|<1
$$

By applying q-differentiation with respect to z, we get

$$
\begin{equation*}
z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} f(z)=z \mathfrak{D}_{q}(\phi(z)) \mathcal{R}_{q}^{\delta} g(z)+\phi(z) z \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} g(z)\right) .\right. \tag{3.8}
\end{equation*}
$$

Thus in view of (3.7) and using (1.14), just as in the proof of Theorem 2.2, we have

$$
\left\lvert\, \mathfrak{D}_{q}\left(\phi(z) \left\lvert\, \leq \frac{1-|\phi(z)|^{2}}{1-|z|^{2}} \quad(z \in \mathbb{U})\right.\right.\right.
$$

and

$$
\left\lvert\, \mathfrak{D}_{q}\left(\left.\mathcal{R}_{q}^{\delta} f(z)\left|\leq\left(|\phi(z)|+\frac{1-|\phi(z)|^{2}}{1-|z|^{2}} \cdot \frac{(1+\Re(\mu)-|\tau| r|z|}{\left(q^{\delta}-[\delta] q\right)(1+\Re(\mu))-q^{\delta}|\tau| r}\right)\right| \mathfrak{D}_{q}\left(\mathcal{R}_{q}^{\delta} g(z)\right) \right\rvert\,\right.\right.
$$

$$
|z|=r, 0<r<1 \text {. That is, }
$$

$$
\begin{align*}
\left|\mathcal{R}_{q}^{\delta+1} f(z)\right| \leq & \left(|\phi(z)|+\frac{1-|\phi(z)|^{2}}{1-r^{2}} \cdot \frac{(1+\Re(\mu)-|\tau| r) r}{\left(q^{\delta}-[\delta]_{q}\right)(1+\Re(\mu))-q^{\delta}|\tau| r}\right) \\
& \times \mathcal{R}_{q}^{\delta+1} g(z) \mid \\
= & \Lambda_{1}(\rho, r)\left|\mathcal{R}_{q}^{\delta+1} g(z)\right| \tag{3.9}
\end{align*}
$$

where $|z|=r, 0<r<1$. We set $|\phi(z)|=\rho$ and the function $\Lambda_{1}(\rho, r)$ defined by

$$
\begin{equation*}
\Lambda_{1}(\rho, r)=\rho+\frac{1-\rho^{2}}{1-r^{2}} \cdot \frac{(1+\Re(\mu)-|\tau| r) r}{\left(q^{\delta}-[\delta]_{q}\right)(1+\Re(\mu))-q^{\delta}|\tau| r} \tag{3.10}
\end{equation*}
$$

In order to determine the bound of $\Lambda(\rho, r)$, we have to choose

$$
\begin{aligned}
r_{1} & =\max \left\{r \in[0,1): \Lambda_{1}(\rho, r) \leq 1, \rho \in[0,1]\right\} \\
& =\max \left\{r \in[0,1): \Lambda_{2}(\rho, r) \geq 0, \rho \in[0,1]\right\},
\end{aligned}
$$

where, for $0 \leq \rho \leq 1$.
$\Lambda_{2}(r, \rho)=\left(1-r^{2}\right)\left\{\left(q^{\delta}-[\delta]_{q}\right)(1+\Re(\mu))-q^{\delta}|\tau| r\right\}-r(1+\rho)(1+\Re(\mu)-|\tau| r)$.
Obviously, for $\rho=1$, the function $\Lambda_{2}(r, \rho)$ takes its minimum value, namely

$$
\min \left\{\Lambda_{2}(r, \rho): \rho \in[0,1]\right\}=\Lambda_{2}(r, 1)=\Lambda_{2}(r),
$$

where

$$
\Lambda_{2}(r)=\left(1-r^{2}\right)\left\{\left(q^{\delta}-[\delta]_{q}\right)(1+\Re(\mu))-q^{\delta}|\tau| r\right\}-2 r(1+\Re(\mu)-|\tau| r) .
$$

Furthermore, if $\Lambda_{2}(0)=\left(q^{\delta}-[\delta]_{q}\right)(1+\Re(\mu))>0$ and $\Lambda_{2}(1)=-2(1+\Re(\mu)-$ $|\tau|)<0$, then there exists r_{4} such that $\Lambda_{2}(r) \geq 0$ for all $r \in\left[0, r_{4}\right]$, where $r_{4}=r_{4}(\tau, \mu, \delta)$, the smallest positive root of the equation (3.5) which completes the proof of Theorem 3.3.

Remark 3.4. Specializing the parameters δ, β in (1.15) one can define the various other interesting subclasses of $\mathcal{R} \mathcal{S}_{q}^{\delta}\left(\beta, e^{z}\right)$, involving q-calculus operator and one can easily derive the result as in Theorem 2.2. Further as mentioned in[11] we can define new subclasses $\mathcal{R} \mathcal{S}_{q}^{\delta}(\beta, 1+\sin z), \mathcal{R} \mathcal{S}_{q}^{\delta}(\beta, \cos z)$, and $\mathcal{R} \mathcal{S}_{q}^{\delta}\left(\beta, z+\sqrt{1+z^{2}}\right)$, and investigate a majorization problem for these classes.

Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology(2019R1I1A3A01050861).

References

[1] O. Altintaş, Ö. Özkan and H.M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl., 46 (2001), 207-218.
[2] S.P. Goyal and P. Goswami, Majorization for certain classes of analytic functions defined by fractional derivatives, Appl. Math. Lett., 22 (2009), 1855-1858.
[3] F.H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1908), 253-281.
[4] S. Kanas and D. Răducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca, 64(5) (2014), 1183-1196.
[5] T.H. MacGregor, Majorization by univalent functions, Duke Math. J., 34 (1967), 95102.
[6] S.S. Miller and P.T. Mocanu, Differential subordinations Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
[7] Z. Nehari, Conformal mapping MacGra-Hill Book Company, New York; Toronto and London, 1952.
[8] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malaysian Math. Soc., 38 (2014), 365386.
[9] S. Ruscheweyh, New criteria for univalent functions, roc. Amer. Math. Soc., 49 (1975), 109-115.
[10] K.A. Selvakumaran, S.D. Purohit and A. Secer, Majorization for a class of analytic functions defined by q - differentiation, Math. Prob. Engineering, 2014, Article ID: 653917, 5 pages.
[11] H. Tang, H.M. Srivastava, S.H. Li and G.T. Deng, Majorization results for subclasses of starlike functions based on the sine and cosine functions, Bull. Iran. Math. Soc., 46 (2020), 389-391.
[12] H. Tang and G. Deng, Majorization problems for certain classes of multivalent analytic functions related with the Srivastava-khairnar-more operator and exponential function, Filomat, 32(15) (2018), 5319-5328.

[^0]: ${ }^{0}$ Received July 8, 2020. Revised August 31, 2020. Accepted October 3, 2020.
 ${ }^{0} 2010$ Mathematics Subject Classification: 30C45, 30C80, 33C10.
 ${ }^{0}$ Keywords: Analytic functions, starlike and convex functions of complex order, uniformly starlike functions, quasi-subordination, majorization problems, Hadamard product (convolution), q-calculus operator, exponential function.
 ${ }^{0}$ Corresponding author: N. E. Cho(necho@pknu.ac.kr).

