• Title/Summary/Keyword: q-Bernoulli numbers

Search Result 49, Processing Time 0.022 seconds

p-ADIC q-HIGHER-ORDER HARDY-TYPE SUMS

  • SIMSEK YILMAZ
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.111-131
    • /
    • 2006
  • The goal of this paper is to define p-adic Hardy sums and p-adic q-higher-order Hardy-type sums. By using these sums and p-adic q-higher-order Dedekind sums, we construct p-adic continuous functions for an odd prime. These functions contain padic q-analogue of higher-order Hardy-type sums. By using an invariant p-adic q-integral on $\mathbb{Z}_p$, we give fundamental properties of these sums. We also establish relations between p-adic Hardy sums, Bernoulli functions, trigonometric functions and Lambert series.

A NOTE ON THE WEIGHTED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH THEIR INTERPOLATION FUNCTION

  • Arac, Serkan;Ackgoz, Mehmet;Seo, Jong-Jin
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Recently, T. Kim has introduced and analysed the q-Bernoulli numbers and polynomials with weight ${\alpha}$ cf.[7]. By the same motivaton, we also give some interesting properties of the q-Genocchi numbers and polynomials with weight ${\alpha}$. Also, we derive the q-extensions of zeta type functions with weight from the Mellin transformation of this generating function which interpolates the q-Genocchi polynomials with weight at negative integers.

ANALYTIC PROPERTIES OF THE q-VOLKENBORN INTEGRAL ON THE RING OF p-ADIC INTEGERS

  • Kim, Min-Soo;Son, Jin-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • In this paper, we consider the q-Volkenborn integral of uniformly differentiable functions on the p-adic integer ring. By using this integral, we obtain the generating functions of twisted q-generalized Bernoulli numbers and polynomials. We find some properties of these numbers and polynomials.

A remark on p-adic q-bernoulli measure

  • Kim, Han-Soo;Lim, Pil-Sang;Kim, Taekyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 1996
  • Throughout this paper $Z^p, Q_p$ and C_p$ will denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of the algebraic closure of $Q_p$, respectively. Let $v_p$ be the normalized exponential valuation of $C_p$ with $$\mid$p$\mid$_p = p^{-v_p (p)} = p^{-1}$. We set $p^* = p$ for any prime p > 2 $p^* = 4 for p = 2$.

  • PDF

ON THE IDEAL CLASS GROUPS OF REAL ABELIAN FIELDS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • v.4 no.1
    • /
    • pp.45-49
    • /
    • 1996
  • Let $F_0$ be the maximal real subfield of $\mathbb{Q}({\zeta}_q+{\zeta}_q^{-1})$ and $F_{\infty}={\cup}_{n{\geq}0}F_n$ be its basic $\mathbb{Z}_p$-extension. Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $F_n$. The aim of this paper is to examine the injectivity of the natural $mapA_n{\rightarrow}A_m$ induced by the inclusion $F_n{\rightarrow}F_m$ when $m>n{\geq}0$. By using cyclotomic units of $F_n$ and by applying cohomology theory, one gets the following result: If $p$ does not divide the order of $A_1$, then $A_n{\rightarrow}A_m$ is injective for all $m>n{\geq}0$.

  • PDF