A NOTE ON THE WEIGHTED q-GENOCCHI NUMBERS AND POLYNOMIALS WITH THEIR INTERPOLATION FUNCTION

Serkan Araci, Mehmet Açikgöz and Jong Jin Seo

Abstract

Recently, T. Kim has introduced and analysed the q Bernoulli numbers and polynomials with weight α cf.[7]. By the same motivaton, we also give some interesting properties of the q-Genocchi numbers and polynomials with weight α. Also, we derive the q-extensions of zeta type functions with weight α from the Mellin transformation of this generating function which interpolates the q-Genocchi polynomials with weight α at negative integers.

1. Introduction, Definitions and Notations

Let p be a fixed odd prime number. Throughout this paper we use the following notations. By \mathbb{Z}_{p} we denote the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_{p} denotes the field of p-adic rational numbers, and \mathbb{C}_{p} denotes the completion of algebraic closure of \mathbb{Q}_{p}. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}^{*}=\mathbb{N} \cup\{0\}$. The p-adic absolute value is defined by $|p|_{p}=\frac{1}{p}$. In this paper we assume $|q-1|_{p}<1$ as an indeterminate. In [12-15], the fermionic p-adic q-integral on \mathbb{Z}_{p} is defined by Kim as follows:

$$
\begin{equation*}
I_{-q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1} f(x)(-q)^{x} \tag{1.1}
\end{equation*}
$$

where $[x]_{q}$ is a q-extension of x which is defined by

$$
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad \text { see }[1-15]
$$

[^0]Note that $\lim _{q \rightarrow 1}[x]_{q}=x$.
The q-Genocchi numbers are defined as follows:

$$
G_{0, q}=0, \text { and } q\left(q G_{q}+1\right)^{n}+G_{n, q}= \begin{cases}{[2]_{q},} & n=1 ; \tag{1.2}\\ 0, & n>1\end{cases}
$$

with the usual convention of replacing $\left(G_{q}\right)^{n}$ by $G_{n, q}$ (see [1]).
The (h, q)-Genocchi numbers are defined as follows:

$$
G_{0, q}^{(h)}=0, \text { and } q^{h-2}\left(q G_{q}^{(h)}+1\right)^{n}+G_{n, q}^{(h)}= \begin{cases}{[2]_{q},} & n=1 ; \\ 0, & n>1,\end{cases}
$$

with usual the convention about replacing $\left(G_{q}^{(h)}\right)^{n}$ by $G_{n, q}^{(h)}$ (see [2]).

In [7], the q-Bernoulli numbers and polynomials with weight α has been investigated some interesting properties by Kim. By using p-adic q-integral on \mathbb{Z}_{p}, we also investigate some interesting identities of the q-Genocchi numbers and polynomials with weight α. Furthermore, we derive the q-extensions of zeta type functions with weight α from the Mellin transformation of this generating function which interpolates the q-Genocchi polynomials with weight α at negative integers.

2. On the weighted q-Genocchi numbers and polynomials

Let $f_{n}(x)=f(x+n)$. By using definition (1.1), we easily get

$$
\begin{align*}
{ }_{-q I_{-q}\left(f_{1}\right)=} & \lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1} f(x+1)(-q)^{x+1} \\
= & \lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1} f(x)(-q)^{x}-(1+q) \\
& \cdot \lim _{N \rightarrow \infty} \frac{f\left(p^{N}\right) q^{p^{N}}+f(0)}{1+q^{p^{N}}} \\
= & I_{-q}(f)-[2]_{q} f(0) \tag{2.1}
\end{align*}
$$

and

$$
\begin{aligned}
q^{2} I_{-q}\left(f_{2}\right) & =q^{2} \int_{\mathbb{Z}_{p}} f(x+2) d \mu_{-q}(x) \\
& =\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1} f(x+2)(-q)^{x+2} \\
& =-q I_{-q}\left(f_{1}\right)+q(1+q) \lim _{N \rightarrow \infty} \frac{f\left(p^{N}+1\right) q^{p^{N}}+f(1)}{1+q^{p^{N}}} \\
& =I_{-q}(f)-[2]_{q} f(0)+[2]_{q} f(1) .
\end{aligned}
$$

Thus we have

$$
-I_{-q}(f)+q^{2} I_{-q}\left(f_{2}\right)=[2]_{q} \sum_{l=0}^{1}(-1)^{l} q^{1-l} f(l) .
$$

Continuing this process, we obtain the following Lemma
Lemma 1. For $n \in \mathbb{N}^{*}$, we obtain

$$
\begin{equation*}
(-1)^{n-1} I_{-q}(f)+q^{n} I_{-q}\left(f_{n}\right)=[2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{n-l-1} f(l) \tag{2.2}
\end{equation*}
$$

Definition 1. Let $\alpha, n \in \mathbb{N}^{*}$. The q-Genocchi numbers with weight α are defined as follows:

$$
\begin{equation*}
\frac{\widetilde{G}_{n+1, q}^{(\alpha)}}{n+1}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[m]_{q^{\alpha}}^{n} . \tag{2.3}
\end{equation*}
$$

From (2.3) we obtain,

$$
\begin{aligned}
& \frac{\widetilde{G}_{n+1, q}^{(\alpha)}}{n+1} \\
= & \frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{m=0}^{\infty}(-1)^{m} q^{m}\left(1-q^{m \alpha}\right)^{n} \\
= & \frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l}\left(q^{m \alpha}\right)^{l} \\
= & \frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \sum_{m=0}^{\infty}(-1)^{m} q^{m \alpha l+m} \\
= & \frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{\alpha l+1}} .
\end{aligned}
$$

Therefore we obtain the following theorem:
Theorem 1. Let $\alpha, n \in \mathbb{N}^{*}$ and we have

$$
\begin{equation*}
\frac{\widetilde{G}_{n+1, q}^{(\alpha)}}{n+1}=\frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{\alpha l+1}} \tag{2.4}
\end{equation*}
$$

In (1.1), replace $f(x)$ by $[x]_{q^{\alpha}}^{n}$ we have,

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{n} d \mu_{-q}(x) & =\frac{1}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \int_{\mathbb{Z}_{p}} q^{\alpha l x} d \mu_{-q}(x) \\
& =\frac{1}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1}\left(-q^{\alpha l+1}\right)^{x} \\
& =\frac{1}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{(1+q)}{1+q^{\alpha l+1}} \lim _{N \rightarrow \infty} \frac{1+\left(q^{\alpha l+1}\right)^{p^{N}}}{1+q^{p^{N}}} \\
& =\frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{\alpha l+1}} \\
& =\frac{\widetilde{G}_{n+1, q}^{(\alpha)}}{n+1} .
\end{aligned}
$$

From (2.4) and (2.5) we obtain q-Genocchi numbers with weight α witt's type formula the following theorem:

Theorem 2. For $\alpha, n \in \mathbb{N}^{*}$ and we have

$$
\begin{equation*}
\frac{\widetilde{G}_{n+1, q}^{(\alpha)}}{n+1}=\int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{n} d \mu_{-q}(x) \tag{2.6}
\end{equation*}
$$

From (2.3) we easily get,

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} e^{t[x]_{q^{\alpha}}} d \mu_{-q}(x)=[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{t[m]_{q^{\alpha}}} . \tag{2.7}
\end{equation*}
$$

By (2.7) we have

$$
\sum_{n=0}^{\infty} \widetilde{G}_{n, q}^{(\alpha)} \frac{t^{n}}{n!}=[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{t[m]_{q^{\alpha}}}
$$

Therefore we obtain the following corollary:

Corollary 1. Let $D_{q}^{(\alpha)}(t)=\sum_{n=0}^{\infty} \widetilde{G}_{n, q}^{(\alpha)} \frac{t^{n}}{n!}$. Then we have

$$
D_{q}^{(\alpha)}(t)=[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{t[m]_{q^{\alpha}}}
$$

Now, we consider the q-Genocchi polynomials with weight α as follows:

$$
\begin{equation*}
\frac{\widetilde{G}_{n+1, q}^{(\alpha)}(x)}{n+1}=\int_{\mathbb{Z}_{p}}[x+y]_{q^{\alpha}}^{n} d \mu_{-q}(y), \quad n \in \mathbb{N} \text { and } \alpha \in \mathbb{N}^{*} \tag{2.8}
\end{equation*}
$$

From (2.8) we see that

$$
\begin{align*}
\frac{\widetilde{G}_{n+1, q}^{(\alpha)}(x)}{n+1} & =\frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{\alpha l x} \frac{1}{1+q^{\alpha l+1}} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[m+x]_{q^{\alpha}}^{n} \tag{2.9}
\end{align*}
$$

Let $D_{q}^{(\alpha)}(t, x)=\sum_{n=0}^{\infty} \widetilde{G}_{n, q}^{(\alpha)}(x) \frac{t^{n}}{n!}$. Then we have

$$
\begin{align*}
D_{q}^{(\alpha)}(t, x) & =[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{t[m+x]_{q} \alpha} \\
& =\sum_{n=0}^{\infty} \widetilde{G}_{n, q}^{(\alpha)}(x) \frac{t^{n}}{n!} . \tag{2.10}
\end{align*}
$$

By Lemma 1, we see that

$$
(-1)^{n-1} \frac{\widetilde{G}_{m+1, q}^{(\alpha)}}{m+1}+q^{n} \frac{\widetilde{G}_{m+1, q}^{(\alpha)}(n)}{m+1}=[2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{n-l-1}[l]_{q^{\alpha}}^{m}
$$

Therefore we obtain the following theorem:
Theorem 3. For $m \in \mathbb{N}$, and $\alpha, n \in \mathbb{N}^{*}$, one has

$$
(-1)^{n-1} \frac{\widetilde{G}_{m+1, q}^{(\alpha)}}{m+1}+q^{n} \frac{\widetilde{G}_{m+1, q}^{(\alpha)}(n)}{m+1}=[2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{n-l-1}[l]_{q^{\alpha}}^{m}
$$

In (2.1) it is known that

$$
q I_{-q}\left(f_{1}\right)+I_{-q}(f)=[2]_{q} f(0)
$$

If we take $f(x)=e^{t[x]_{q^{\alpha}}}$, then we have

$$
\begin{align*}
{[2]_{q} } & =q \int_{\mathbb{Z}_{p}} e^{t[x+1]_{q^{\alpha}}} d \mu_{-q}(x)+\int_{\mathbb{Z}_{p}} e^{t[x]_{q^{\alpha}}} d \mu_{-q}(x) \\
& =\sum_{n=0}^{\infty}\left(q \widetilde{G}_{n, q}^{(\alpha)}(1)+\widetilde{G}_{n, q}^{(\alpha)}\right) \frac{t^{n-1}}{n!} \tag{2.11}
\end{align*}
$$

Therefore, by (2.11), we obtain the following theorem:
Theorem 4. For $\alpha \in \mathbb{N}^{*}$ and $n \in \mathbb{N}$, we get

$$
\widetilde{G}_{0, q}^{(\alpha)}=0, \text { and } q \widetilde{G}_{n, q}^{(\alpha)}(1)+\widetilde{G}_{n, q}^{(\alpha)}= \begin{cases}{[2]_{q},} & \text { if } n=1 \\ 0, & \text { if } n \neq 1\end{cases}
$$

From (2.8), we can easily derive

$$
\begin{align*}
\int_{\mathbb{Z}_{p}}[x+y]_{q^{\alpha}}^{n} d \mu_{-q}(y) & =\frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}} \sum_{a=0}^{d-1}(-1)^{a} q^{a} \int_{\mathbb{Z}_{p}}\left[\frac{x+a}{d}+y\right]_{q^{d \alpha}}^{n} d \mu_{(-q)^{d}}(y) \\
& =\frac{[d]_{q^{\alpha}}^{n}}{[d]_{-q}} \sum_{a=0}^{d-1}(-1)^{a} q^{a} \frac{\widetilde{G}_{n+1, q^{d}}^{(\alpha)}\left(\frac{x+a}{d}\right)}{n+1} . \tag{2.12}
\end{align*}
$$

Therefore, by (2.12), we obtain the following theorem:
Theorem 5. For $d \equiv 1(\bmod 2), n \in \mathbb{N}^{*}$ and $\alpha \in \mathbb{N}$, we get

$$
\widetilde{G}_{n, q}^{(\alpha)}(x)=\frac{[d]_{q^{\alpha}}^{n-1}}{[d]_{-q}} \sum_{a=0}^{d-1}(-1)^{a} q^{a} \widetilde{G}_{n, q^{d}}^{(\alpha)}\left(\frac{x+a}{d}\right)
$$

3. Interpolation function of the polynomials $\widetilde{G}_{n, q}^{(\alpha)}(x)$

In this section, we give interpolation function of the generating functions of q-Genocchi polynomials with weight α. For $s \in \mathbb{C}$, by applying the Mellin transformation to (2.10), we obtain

$$
\begin{aligned}
\xi_{q}^{(\alpha)}(s, x) & =\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-2}\left\{-D_{q}^{(\alpha)}(-t, x)\right\} d t \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t[m+x]_{q^{\alpha}}} d t \\
& =[2]_{q} \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m}}{[m+x]_{q^{\alpha}}^{s}}
\end{aligned}
$$

where $\Gamma(s)$ is Euler-gamma function.

Thus, we define q-extension zeta type function as follows:
Definition 2. For $s \in \mathbb{C}$ and $\alpha \in \mathbb{N}^{*}$ we have

$$
\begin{equation*}
\xi_{q}^{(\alpha)}(s, x)=[2]_{q} \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m}}{[m+x]_{q^{\alpha}}^{s}} \tag{3.1}
\end{equation*}
$$

$\xi_{q}^{(\alpha)}(s, x)$ can be continued analytically to an entire function.
By subsituting $s=-n$ into (3.1) we easily get

$$
\xi_{q}^{(\alpha)}(-n, x)=\frac{\widetilde{G}_{n+1, q}^{(\alpha)}(x)}{n+1}
$$

Therefore, we obtain the following theorem:
Theorem 6. Let $q, s \in \mathbb{C}$ with $|q|<1$ and $0<x \leq 1$. Then we define

$$
\xi_{q}^{(\alpha)}(-n, x)=\frac{\widetilde{G}_{n+1, q}^{(\alpha)}(x)}{n+1}
$$

References

[1] Araci, S., Erdal, D., and Kang, D-J., Some new properties on the q-Genocchi numbers and polynomials associated with q-Bernstein polynomials, Honam Mathematical Journal, vol. 33, no. 2, pp. 261-270, 2011.
[2] Araci, S., and Açıkgöz M., Some identities concerning (h, q)-Genocchi numbers and polynomials via the p-adic q-integral on \mathbb{Z}_{p} and q-Bernstein polynomials, (submitted)
[3] Jang, Lee-Chae., A note on some properties of the weighted q-Genocchi numbers and polynomials, Journal of Applied Mathematics(in press).
[4] Kim, T., A new approach to q-Zeta function, Adv. Stud. Contemp. Math. 11 (2) 157-162.
[5] Kim, T., On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458-1465.
[6] Kim, T., On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008) 481-486. arXiv:0801.0978v1 [math.NT]
[7] Kim, T., On the weighted q-Bernoulli numbers and polynomials, Advanced Studies in Contemporary Mathematics 21 (2011), no.2, p. 207-215 http://arxiv.org/abs/1011.5305.
[8] Kim, T., A Note on the q-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications 2007 (2007) doi:10.1155/2007/71452. Article ID 71452, 8 pages.
[9] Kim, T., q-Volkenborn integration, Russ. J. Math. phys. 9(2002), 288-299.
[10] Kim, T., q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15(2008), 51-57.
[11] Kim, T., An invariant p-adic q-integrals on \mathbb{Z}_{p}, Applied Mathematics Letters, vol. 21, pp. 105-108,2008.
[12] Kim, T. Choi, J. Kim, Y. H. and Jang, L. C., On p-Adic Analogue of q-Bernstein Polynomials and Related Integrals, Discrete Dynamics in Nature and Society, Article ID 179430, 9 pages, doi:10.1155/2010/179430.
[13] Kim, T., q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14 (2007), no. 1, 15-27.
[14] Kim, T., New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no. 2, 218-225.
[15] Kim, T., Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}, Russ. J. Math. Phys., 16 (2009), no.4,484-491.

Serkan Aracı

Department of Mathematics, Faculty of Science and Arts, University of Gaziantep,
Gaziantep 27310, Turkey.
E-mail: mtsrkn@hotmail.com

Mehmet Açıkgöz
Department of Mathematics, Faculty of Science and Arts, University of Gaziantep,
Gaziantep 27310, Turkey.
E-mail: acikgoz@gantep.edu.tr

Jong Jin Seo
Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea.
E-mail: seo2011@pknu.ac.kr

[^0]: Received September 28, 2011. Accepted October 31, 2011.
 2000 Mathematics Subject Classification. Primary 46A15, Secondary 41A65.
 Key words and phrases. Genocchi numbers and polynomials, q-Genocchi numbers and polynomials, q-Genocchi numbers and polynomials with weight α.

