• 제목/요약/키워드: pseudoparallel

검색결과 6건 처리시간 0.019초

CHARACTERIZATIONS FOR TOTALLY GEODESIC SUBMANIFOLDS OF (𝜅, 𝜇)-PARACONTACT METRIC MANIFOLDS

  • Atceken, Mehmet;Uygun, Pakize
    • Korean Journal of Mathematics
    • /
    • 제28권3호
    • /
    • pp.555-571
    • /
    • 2020
  • The aim of the present paper is to study pseudoparallel invariant submanifold of a (𝜅, 𝜇)-paracontact metric manifold. We consider pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci generalized pseudo parallel invariant submanifolds of a (𝜅, 𝜇)-paracontact metric manifold and we obtain new results contribute to geometry.

CERTAIN RESULTS ON INVARIANT SUBMANIFOLDS OF PARA-KENMOTSU MANIFOLDS

  • Atceken, Mehmet
    • 호남수학학술지
    • /
    • 제43권1호
    • /
    • pp.35-46
    • /
    • 2021
  • The purpose of this paper is to study invariant pseudoparallel, Ricci generalized pseudoparallel and 2-Ricci generalized pseudoparallel submanifold of a para-Kenmotsu manifold and I obtained some equivalent conditions of invariant submanifolds of para-Kenmotsu manifolds under some conditions which the submanifolds are totally geodesic. Finally, a non-trivial example of invariant submanifold of paracontact metric manifold is constructed in order to illustrate our results.

PSEUDOPARALLEL INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS

  • Atceken, Mehmet;Yildirim, Umit;Dirik, Suleyman
    • Korean Journal of Mathematics
    • /
    • 제28권2호
    • /
    • pp.275-284
    • /
    • 2020
  • The aim of this paper is to study the invariant submanifolds of (LCS)n-manifolds. We study pseudo parallel, generalized Ricci-pseudo parallel and 2-pseudo parallel invariant submanifolds of a (LCS)n-manifold and get the necessary and sufficient conditions for an invariant submanifold to be totally geodesic and give some new results contribute to differential geometry.

INVARIANT PSEUDOPARALLEL SUBMANIFOLDS OF AN ALMOST 𝛼-COSYMPLECTIC (𝜅, 𝜇, 𝜈)-SPACE

  • Mehmet Atceken;Gulsum Yuca
    • 호남수학학술지
    • /
    • 제46권4호
    • /
    • pp.522-537
    • /
    • 2024
  • In this article, we research the conditions for invariant sub-manifolds in an almost 𝛼-cosymplectic (𝜅, 𝜇, 𝜈) space to be pseudo-parallel, Ricci-generalized pseudo-parallel and 2-Ricci-generalized pseudo-parallel. We think that the results for the relations among the functions will contribute to differential geometry.

SOME RESULTS ON INVARINAT SUBMANIFOLDS OF LORENTZIAN PARA-KENMOTSU MANIFOLDS

  • Atceken, Mehmet
    • Korean Journal of Mathematics
    • /
    • 제30권1호
    • /
    • pp.175-185
    • /
    • 2022
  • The purpose of this paper is to study invariant submanifolds of a Lorentzian para Kenmotsu manifold. We obtain the necessary and sufficient conditions for an invariant submanifold of a Lorentzian para Kenmotsu manifold to be totally geodesic. Finally, a non-trivial example is built in order to verify our main results.

On Semiparallel and Weyl-semiparallel Hypersurfaces of Kaehler Manifolds

  • Ozgur, Cihan;Murathan, Cengizhan;Arslan, Kadri
    • Kyungpook Mathematical Journal
    • /
    • 제49권1호
    • /
    • pp.133-141
    • /
    • 2009
  • We study on semiparallel and Weyl semiparallel Sasakian hypersurfaces of Kaehler manifolds. We prove that a (2n + 1)-dimensional Sasakian hypersurface M of a (2n+2)-dimensional Kaehler manifold $\widetilde{M}^{2n+2}$ is semiparallel if and only if it is totally umbilical with unit mean curvature, if dimM = 3 and $\widetilde{M}^4$ is a Calabi-Yau manifold, then $\widetilde{M}$ is flat at each point of M. We also prove that such a hypersurface M is Weyl-semiparallel if and only if it is either an ${\eta}$-Einstein manifold or semiparallel. We also investigate the extended classes of semiparallel and Weyl semiparallel Sasakian hypersurfaces of Kaehler manifolds.