DOI QR코드

DOI QR Code

INVARIANT PSEUDOPARALLEL SUBMANIFOLDS OF AN ALMOST 𝛼-COSYMPLECTIC (𝜅, 𝜇, 𝜈)-SPACE

  • Mehmet Atceken (Aksaray University, Faculty of Arts and Sciences, Department of Mathematics) ;
  • Gulsum Yuca (Aksaray University, Faculty of Arts and Sciences, Department of Mathematics)
  • Received : 2023.01.18
  • Accepted : 2024.07.18
  • Published : 2024.12.20

Abstract

In this article, we research the conditions for invariant sub-manifolds in an almost 𝛼-cosymplectic (𝜅, 𝜇, 𝜈) space to be pseudo-parallel, Ricci-generalized pseudo-parallel and 2-Ricci-generalized pseudo-parallel. We think that the results for the relations among the functions will contribute to differential geometry.

Keywords

References

  1. M. At,ceken and P. Uygun, Characterizations for totally geodesic submanifolds of (κ, µ)-paracontact metric manifolds, Korean J. Math. 28 (2020), no. 3, 555-571.
  2. M. Atceken, U. Yildirim, and S. Dirik, Pseudoparallel invariant submanifolds of (LCS)n-manifolds, Korean J. Math. 28 (2020), no. 2, 275-284.
  3. A. Carriazo and V. Martin-Molina, Almost cosymplectic and almost Kenmotsu (κ, µ, ν)-spaces, Mediterr. J. Math.10 (2013) 1551-1571.
  4. P. Dacko and Z. Olszak, On almost cosympletic (κ, µ, ν)-spaces, Banach Center Publ., 211-220, 69 Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2005.
  5. P. Dacko and Z. Olszak, On almost cosymplectic (-1, µ, o)-spaces, Cent. Eur. J. Math. 3 (2005), no. 2, 318-330.
  6. D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J.4 (1981), no.1, 1-27.
  7. T. W. Kim and H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 841-846.
  8. T. Koufogiorgos, M. Markellos, and V. J. Papantoniou, The harmonicity of the Reeb vector fields on contact 3-manifolds, Pasific J. Math. 234 (2008), no.2, 325-344.
  9. T. Mert and M. Atceken, Some important properties of almost Kenmotsu (κ, µ, ν) space on the concircular curvature tensor, Fundam. J. Math. Appl. 6 (2023), no.1, 51-60.
  10. H. Ozturk, C. Murathan, N. Aktan, and A. T. Vanli, Almost α-cosymplectic f-manifolds. Analele S. Tint. Ifice Ale Universitat II. Al.I. Cuza Din Iasi (S.N.) Matematica, Tomul LX, 2014.
  11. S. Sular, C. Ozgur, and C. Murathan, Pseudoparallel anti-invariant submanifolds of Kenmotsu manifolds, Hacet. J. Math. Stat. 39 (2010), no.4, 535-543.
  12. I. Vaisman, Conformal changes of almost contact metric structures, Lecture Notes in Math., 792 Springer, Berlin, 1980, ,435-443.
  13. S. Ozturk and H. Ozturk, Certain class of almost α-cosymplectic manifolds. J. Math. (2021), Art. ID 9277175.