Honam Mathematical J. 46 (2024), No. 4, pp. 522–537 https://doi.org/10.5831/HMJ.2024.46.4.522

INVARIANT PSEUDOPARALLEL SUBMANIFOLDS OF AN ALMOST α -COSYMPLECTIC (κ, μ, ν) -SPACE

MEHMET ATCEKEN AND GÜLSÜM YÜCA^{*}

Abstract. In this article, we research the conditions for invariant submanifolds in an almost α -cosymplectic (κ, μ, ν) space to be pseudo-parallel, Ricci-generalized pseudo-parallel and 2-Ricci-generalized pseudo-parallel. We think that the results for the relations among the functions will contribute to differential geometry.

1. Introduction

An almost contact manifold is an odd-dimensional manifold \widetilde{M}^{2n+1} which carries a field ϕ of endomorphism of the tangent space, a vector field ξ , called characteristic, and a 1-form η satisfying

(1)
$$
\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1,
$$

where I denotes the identity mapping of tangent space at each point of M . From (1), it follows

(2)
$$
\phi\xi = 0, \quad \eta \circ \phi = 0 \quad rank(\phi) = 2n.
$$

An almost contact manifold $\widetilde{M}^{2n+1}(\phi,\xi,\eta)$ is said to be normal if the tensor field $N = [\phi, \phi] + 2d\eta \otimes \xi = 0$, where $[\phi, \phi]$ denote the Nijenhuis tensor field of ϕ . It is well known that any almost contact manifold $\widetilde{M}^{2n+1}(\phi,\xi,\eta)$ has a Riemannian metric such that

(3)
$$
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),
$$

for any vector fields X, Y on $\widetilde{M}[3]$. Such metric g is called compatible metric and the manifold \widetilde{M}^{2n+1} together with the structure (ϕ, η, ξ, g) is called an almost contact metric manifold and is denoted by $\widetilde{M}^{2n+1}(\phi, \eta, \xi, g)$. The 2form Φ of $\widetilde{M}^{2n+1}(\phi, \eta, \xi, g)$ is defined as $\Phi(X, Y) = g(\phi X, Y)$, and is called the

Received January 18, 2023. Accepted July 18, 2024.

²⁰²⁰ Mathematics Subject Classification. 53C15; 53C44, 53D10.

Key words and phrases. κ, μ, ν)-space, pseudoparallel, Ricci-generalized pseudoparallel and 2-pseudoparallel submanifolds.

^{*}Corresponding author

fundamental form of $\widetilde{M}^{2n+1}(\phi, \eta, \xi, q)$. If the Nijenhuis tensor vanishes, defined by

$$
N_\phi(X,Y)=[\phi X,\phi Y]-\phi[\phi X,Y]-\phi[X,\phi Y]-\phi^2[X,Y]+2d\eta(X,Y)\xi,
$$

then $\widetilde{M}^{2n+1}(\phi, \eta, \xi, g)$ is said to be normal. It is obvious that a normal almost Kenmotsu is said to be Kenmotsu manifold. On the other hand, an almost contact metric manifold is known as Kenmotsu if and only if $(\tilde{\nabla}_X \phi)Y =$ $g(\phi X, Y)\xi - \eta(Y)\phi X$. An almost contact metric structure is cosymplectic if and only if $\tilde{\nabla}\eta$ and $\tilde{\nabla}\Phi$ are closed.

In the light of the above definitions, the generalization of almost Kenmotsu manifold, $\widetilde{M}^{2n+1}(\phi, \eta, \xi, q)$ is called almost α -Kenmotsu manifold if $d\eta = 0$ and $d\Phi = 2\alpha\eta \wedge \Phi$, where α is a nonzero real constant[4].

As a generalization of these, a new notation has been introduced of an almost α -cosymplectic manifold which is defined $d\eta = 0$ and $d\Phi = 2\alpha\eta \wedge \Phi$ for a real number α . A normal almost α -cosymplectic manifold is said to be α cosymplectic manifold, and it is either cosymplectic or α -Kenmotsu under the condition $\alpha = 0$ or $\alpha \neq 0$, respectively[6, 12].

It should be noted that almost α -cosymplectic manifolds are generalizations of almost α -Kenmotsu and almost cosymplectic manifolds.

It is well known that on a contact metric manifold $\widetilde{M}^{2n+1}(\phi,\xi,\eta,g)$, the tensor h, defined by $2h = L_{\xi} \phi$, the following equalities are satisfied;

(4) $\widetilde{\nabla}_X \xi = -\phi X - \phi hX$, $h\phi + \phi h = 0$, $trh = tr\phi h = 0$, $h\xi = 0$,

where $\widetilde{\nabla}$ is the Levi-Civita connection on $\widetilde{M}^{2n+1}[4]$.

In [10], the authors studied the almost α -cosymplectic (κ, μ, ν) -spaces under different conditions and gave an example in dimension 3.

Going beyond generalized (κ, μ) -spaces, in [8], the notion of (κ, μ, ν) -contact metric manifold was introduced as follows[10];

(5) $\widetilde{R}(X, Y) \xi = \eta(Y) [\kappa I + \mu h + \nu \phi h] X - \eta(X) [\kappa I + \mu h + \nu \phi h] Y$,

for some smooth functions κ, μ and ν on \widetilde{M}^{2n+1} , where \widetilde{R} denotes the Riemannian curvature tensor of M^{2n+1} and X, Y are vector fields on M^{2n+1} .

They proved that this type of manifold is intrinsically related to the harmonicity of the Reeb vector on contact metric 3-manifolds. Some authors have studied manifolds satisfying condition (5) but a non-contact metric structure. In this connection, P. Dacko and Z. Olszak defined an almost cosymplectic (κ, μ, ν) -space as an almost cosymplectic manifold that satisfies (5), but with κ, μ and ν functions varying exclusively in the direction of ξ in [4]. Later examples have been given for this type manifold[5].

Pseudoparallel submanifolds have been studied in different structures and working on[2, 1, 11]. In the present paper, we generalize the ambient space and research cases of existence or non-existence of pseudoparallel submanifold in α -cosymplectic (κ, μ, ν) -space.

Proposition 1.1. Given $\widetilde{M}^{2n+1}(\phi,\xi,\eta,g)$ an almost α -cosymplectic (κ,μ,ν) space, then

(6)
\n
$$
\tilde{R}(\xi, X)Y = \kappa[g(X, Y)\xi - \eta(Y)X] + \mu[g(hX, Y)\xi - \eta(Y)hX]
$$
\n(7)
\n
$$
+ \nu[g(\phi hX, Y)\xi - \eta(Y)\phi hX]
$$
\n(8)
\n
$$
(\tilde{\nabla}_X \phi)Y = g(\alpha \phi X + hX, Y)\xi - \eta(Y)(\alpha \phi X + hX)
$$
\n(9)
\n
$$
\tilde{\nabla}_X \xi = -\alpha \phi^2 X - \phi hX,
$$

for all vector fields X, Y on $\widetilde{M}^{2n+1}[3]$.

Proof. From (5) , we obtain

(10)
$$
\widetilde{R}(X,\xi)\xi = -\kappa\phi^2X + \mu hX + \nu\phi hX.
$$

Taking ϕX instead of X in (10), we have

(11)
$$
R(\phi X,\xi)\xi = \kappa \phi X + \mu h \phi X + \nu \phi h \phi X.
$$

Applying ϕ to (11) and after the necessary revisions are made, we reach at

(12) $\phi \widetilde{R}(\phi X, \xi) \xi = \kappa \phi^2 X + \mu h X + \nu \phi h X.$

(10) and (12) give us

(13)
$$
\widetilde{R}(X,\xi)\xi - \phi \widetilde{R}(\phi X,\xi)\xi = -2\kappa\phi^2 X.
$$

On the other hand, from ([13]) we know that

$$
\widetilde{R}(X,\xi)\xi = \alpha^2[\eta(X)\xi - X] + \alpha\phi hX + (\widetilde{\nabla}_{\xi}\phi h)X - (\widetilde{\nabla}_X\phi h)\xi
$$
\n(14)
$$
= \alpha^2\phi^2X + 2\alpha\phi hX + \mu hX - h^2X.
$$

This implies that

$$
\widetilde{R}(\phi X,\xi)\xi = -\alpha^2 \phi X + 2\alpha hX + \mu \phi h \phi X + \nu hX - h^2 \phi X.
$$

Applying ϕ to the last equality, one can easily see

(15) $\phi \widetilde{R}(\phi X,\xi)\xi = -\alpha^2 \phi^2 X + 2\alpha \phi hX + \mu hX + \nu \phi hX + h^2 X.$ From (14) and (15) , we verify

(16) $\widetilde{R}(X,\xi)\xi - \phi \widetilde{R}(\phi X,\xi)\xi = 2[\alpha^2 \phi^2 - h^2]X.$

(13) and (18) give us (6).

Also, from (5), we have

$$
g(R(X,Y)\xi,Z) = \kappa g(\eta(Y)X - \eta(X)Y,Z) + \mu g(\eta(Y)hX - \eta(X)hY,Z)
$$

+
$$
\nu g(\eta(Y)\phi hX - \eta(X)\phi hY,Z),
$$

for all $X, Y, Z \in \Gamma(T\widetilde{M})$. By using the properties of \widetilde{R} and $\phi \circ h + h \circ \phi = 0$, we conclude that

$$
g(R(\xi, Z)X, Y) = \kappa \eta(Y)g(X, Z) - \kappa \eta(X)g(Y, Z) + \mu \eta(Y)g(hX, Z)
$$

(17)
$$
- \mu \eta(X)g(Y, hZ) + \nu \eta(Y)g(\phi hX, Z) - \nu \eta(X)g(Y, \phi hZ).
$$

Here, one can easily see

محا

$$
R(\xi, Z)X = \kappa[g(X, Z)\xi - \eta(X)Z] + \mu[g(hX, Z)\xi - \eta(X)hZ]
$$

+
$$
\nu[g(\phi hX, Z)\xi - \eta(X)\phi hZ].
$$

This completes the proof of (7).

Almost α -cosymplectic manifolds are special classes of almost α -cosymplectic f-manifolds, for the proof of (8), one can see [10]. So we do not need to give the proof here.

Taking $Y = \xi$ in (8), we observe

(18)
$$
(\tilde{\nabla}_X \phi)\xi = -\phi \tilde{\nabla}_X \xi = -\alpha \phi X - hX.
$$

Applying ϕ to (18) and after the necessary revisions are made, we can verify (9). Thus, the proof is completed. \Box

Now, let M be an immersed submanifold of an almost α -cosymplectic (κ, μ, ν) space M^{2n+1} . By $\Gamma(TM)$ and $\Gamma(T^{\perp}M)$, we denote the tangent and normal subspaces of M in \widetilde{M} . Then, the Gauss and Weingarten formulae are, respectively, given by

(19)
$$
\nabla_X Y = \nabla_X Y + \sigma(X, Y),
$$

and

(20)
$$
\widetilde{\nabla}_X V = -A_V X + \nabla_X^{\perp} V,
$$

for all $X, Y \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$, where ∇ and ∇^{\perp} are the induced connections on M and $\Gamma(T^{\perp}M)$ and σ and A are called the second fundamental form and shape operator of M, respectively, $\Gamma(TM)$ denote the set differentiable vector fields on M . They are related by

(21)
$$
g(A_V X, Y) = g(\sigma(X, Y), V).
$$

The covariant derivative of σ is defined by

(22)
$$
(\widetilde{\nabla}_X \sigma)(Y, Z) = \nabla_X^{\perp} \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z),
$$

for all $X, Y, Z \in \Gamma(TM)$. If $\tilde{\nabla}\sigma = 0$, then the submanifold is called its second fundamental form parallel.

By R , we denote the Riemannian curvature tensor of the submanifold M , we have the following Gauss equation

(23)
$$
R(X,Y)Z = R(X,Y)Z + A_{\sigma(X,Z)}Y - A_{\sigma(Y,Z)}X + (\nabla_X \sigma)(Y,Z)
$$

$$
- (\widetilde{\nabla}_Y \sigma)(X,Z),
$$

for all $X, Y, Z \in \Gamma(TM)$.

For a $(0, k)$ -type tensor field T, $k \ge 1$ and a $(0, 2)$ -type tensor field A on a Riemannian manifold (M, g) , $Q(A, T)$ -tensor field is defined by

$$
Q(A, T)(X_1, X_2, ..., X_k; X, Y) = -T((X \wedge_A Y)X_1, X_2, ..., X_k)...(24) - T(X_1, X_2, ..., X_{k-1}, (X \wedge_A Y)X_k),
$$

for all $X_1, X_2, ..., X_k, X, Y \in \Gamma(TM)[9]$, where

(25)
$$
(X \wedge_A Y)Z = A(Y,Z)X - A(X,Z)Y.
$$

Definition 1.2. A submanifold of a Riemannian manifold (M, g) is said to be pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel and 2- Ricci-generalized pseudoparallel if

$$
R \cdot \sigma \quad and \quad Q(g, \sigma)
$$

$$
\widetilde{R} \cdot \widetilde{\nabla} \sigma \quad and \quad Q(g, \widetilde{\nabla} \sigma)
$$

$$
\widetilde{R} \cdot \sigma \quad and \quad Q(S, \widetilde{\nabla} \sigma)
$$

$$
\widetilde{R} \cdot \widetilde{\nabla} \sigma \quad and \quad Q(S, \widetilde{\nabla} \sigma)
$$

are linearly dependent, respectively[11].

Equivalently, these cases can be explained by the following way;

(26)
$$
R \cdot \sigma = L_1 Q(g, \sigma),
$$

(27) $R \cdot \nabla \sigma = L_2 Q(g, \nabla \sigma),$

(28)
$$
\widetilde{R} \cdot \sigma = L_3 Q(S, \sigma),
$$

(29) $R \cdot \nabla \sigma = L_4 Q(S, \nabla \sigma),$

where the functions L_1, L_2, L_3 and L_4 are, respectively, defined on $M_1 = \{x \in M : \sigma(x) \neq g(x)\}, M_2 = \{x \in M : \tilde{\nabla}\sigma(x) \neq g(x)\}, M_3 = \{x \in M : \sigma(x) \neq g(x)\}$ $S(x) \neq \sigma(x)$ and $M_4 = \{x \in M : S(x) \neq \tilde{\nabla}\sigma(x)\}\$ and S denotes the Ricci tensor of M.

Particularly, if $L_1 = 0$ (resp. $L_2 = 0$), the submanifold is said to be semiparallel(resp. 2-semiparallel)[1].

2. Invariant Submanifolds of an almost α -cosymplectic (κ, μ, ν) Space

Now, let $\widetilde{M}^{2n+1}(\phi,\xi,\eta,g)$ be an almost α -cosymplectic (κ,μ,ν) -space and M an immersed submanifold of \widetilde{M}^{2n+1} . If $\phi(T_xM) \subseteq T_xM$, for each point $x \in M$, then M is said to be an invariant submanifold of $\widetilde{M}^{2n+1}(\phi,\xi,\eta,g)$ with respect to ϕ . Hence, we will easily see that an invariant submanifold with respect to ϕ is also invariant with respect to h.

Proposition 2.1. Let M be an invariant submanifold of an almost α cosymplectic (κ, μ, ν) -space $\widetilde{M}^{2n+1}(\phi, \xi, \eta, g)$ such that ξ tangent to M. Then, the following equalities hold on M ;

(30)
\n
$$
R(X,Y)\xi = \kappa[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY]
$$
\n
$$
+ \nu[\eta(Y)\phi hX - \eta(X)\phi hY]
$$
\n(31)
\n
$$
(\nabla_X \phi)Y = g(\alpha \phi X + hX, Y)\xi - \eta(Y)(\alpha \phi X + hX)
$$
\n(32)

(32)
$$
\nabla_X \xi = -\alpha \phi^2 X - \phi h X
$$

(33) $\phi \sigma(X, Y) = \sigma(\phi X, Y) = \sigma(X, \phi Y), \sigma(X, \xi) = 0,$

where ∇ , σ and R denote the induced Levi-Civita connection, the shape operator and Riemannian curvature tensor of M, respectively.

Proof. Since M is an invariant submanifold, from (9) and (19) , we have

$$
\sigma(X,\xi) = 0, \text{ and } A_V \xi = 0,
$$

for all $X \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$. Also by using (23), we obtain (30). On the other hand, tangent and normal components of expanding

$$
\begin{array}{rcl}\n(\widetilde{\nabla}_X \phi) Y & = & \widetilde{\nabla}_X Y - \phi \widetilde{\nabla}_X Y \\
 & = & \nabla_X \phi Y + \sigma(X, \phi Y) - \phi \nabla_X Y - \phi \sigma(X, Y) \\
 & = & (\nabla_X \phi) Y + \sigma(X, \phi Y) - \phi \sigma(X, Y)\n\end{array}
$$

give us to (31) and (33), respectively.

Finally, the Gauss formulae and (9), we have

$$
\widetilde{\nabla}_X \xi = \nabla_X \xi + \sigma(\xi, X) = -\alpha \phi^2 X - \phi h X,
$$

for all $X \in \Gamma(TM)$. Also tangent components of this give (32). Furthermore, by using (7) , (23) and the last term of (33) , we get (30) . \Box

In the rest of this paper, we will assume that M is an invariant submanifold of an α -cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. In this case, from (4), we have

$$
\phi hX = -h\phi X,
$$

for all $X \in \Gamma(TM)$, that is, M is also invariant with respect to the tensor field h.

We need the following theorem to guarantee for the second fundamental form σ is not always identically zero.

Theorem 2.2. Let M be an invariant submanifold of an almost α -cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. Then, the second fundamental form σ of M is parallel M is totally geodesic provided $\kappa \neq 0$.

Proof. Let us suppose that σ is parallel. From (22), we have

(35)
$$
(\widetilde{\nabla}_X \sigma)(Y, Z) = \nabla_X^{\perp} \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z) = 0,
$$

for all vector fields X, Y and Z on M^{2n+1} . Setting $Z = \xi$ in (35) and taking into account (32) and (33), we have

$$
\sigma(\nabla_X \xi, Y) = -\sigma(\alpha \phi^2 X + \phi h X, Y) = 0,
$$

that is,

(36)
$$
-\alpha\sigma(X,Y) + \phi\sigma(hX,Y) = 0.
$$

Writing hX of X in (36) and by using (6) and (33), we obtain

(37)
$$
-\alpha\sigma(hX,Y) + \phi\sigma(h^{2}X,Y) = 0,
$$

$$
\alpha\sigma(hX,Y) + (\alpha^{2} + \kappa)\phi\sigma(X,Y) = 0.
$$

From (36) and (37), we conclude that $\kappa \sigma(X, Y) = 0$, which proves our assertion. \Box

Theorem 2.3. Let M be an invariant pseudoparallel submanifold of an almost α cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. Then, M is either totally geodesic submanifold or the function L_1 satisfies $L_1 = \kappa \mp \sqrt{(\nu^2 - \mu^2)(\kappa + \alpha^2)}$, $\mu\nu(\kappa + \alpha^2) = 0.$

Proof. We suppose that M is an invariant pseudoparallel submanifold of an almost α -cosymplectic $M^{2n+1}(\phi,\xi,\eta,g)$ -space. Then, there exists a function L_1 on M such that

$$
(R(X,Y)\cdot \sigma)(U,V)=L_1Q(g,\sigma)(U,V;X,Y),
$$

for all vector fields X, Y, U, V on M. By means of (24) and (26), we have

(38)
$$
R^{\perp}(X,Y)\sigma(U,V) - \sigma(R(X,Y)U,V) - \sigma(U,R(X,Y)V)
$$

$$
= -L_1\{\sigma((X \wedge_g Y)U,V) + \sigma(U,(X \wedge_g Y)V)\}.
$$

Here taking $Y = U = \xi$ in (38) and taking into account of Proposition 2.1, we obtain

$$
R^{\perp}(X,\xi)\sigma(\xi,V) - \sigma(R(X,\xi)\xi,V) - \sigma(\xi,R(X,\xi)V)
$$

= -L₁{\sigma((X \wedge_g \xi)\xi,V) + \sigma(\xi,(X \wedge_g \xi)V)}
= -L₁{\sigma(X - \eta(X)\xi,V) + \sigma(\xi,\eta(V)X - g(X,V)\xi)},

that is,

(39)
$$
\sigma(R(X,\xi)\xi,V) = L_1\sigma(X,V).
$$

By means of Proposition 2.1 and (5), we conclude that

(40)
$$
(L_1 - \kappa)\sigma(X, V) = \mu\sigma(hX, V) + \nu\sigma(\phi hX, V).
$$

If hX is substituted for X at (40) and making use of (6) and (33), we obtain

(41)
$$
(L - \kappa)\sigma(hX, V) = -(\kappa + \alpha^2)[\mu\sigma(X, V) + \nu\phi\sigma(X, V)].
$$

From (40) and (41) , we reach at

$$
[(L_1 - \kappa)^2 + (\kappa + \alpha^2)(\mu^2 - \nu^2)]\sigma(X, V) = -2\mu\nu(\kappa + \alpha^2)\phi\sigma(X, V).
$$

This yields to

$$
(L_1 - \kappa)^2 + (\kappa + \alpha^2)(\mu^2 - \nu^2) = 0
$$
, $\mu\nu(\kappa + \alpha^2) = 0$ or $\sigma = 0$.

This completes the proof.

From the Theorem 2.3, we have the following corollary.

Corollary 2.4. Let M be an invariant submanifold of an almost α -cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. Then, M is semiparallel if and only if M is totally geodesic.

Theorem 2.5. Let M be an invariant submanifold of an almost α - cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. If M is a 2-pseudoparallel submanifold, then M is either totally geodesic or the functions α, κ, μ, ν and L_2 satisfy $L_2 = \kappa \mp \sqrt{(\kappa + \alpha^2)(\nu^2 - \nu^2)}$ and $\mu \nu (\kappa + \alpha^2) = 0$.

Proof. Let us suppose that M is a 2-pseudoparallel submanifold of (κ, μ, ν) space $M^{2n+1}(\phi,\xi,\eta,g)$. Then, by means of (27), there exists a function L_2 such that

$$
(\widetilde{R}(X,Y)\cdot\widetilde{\nabla}\sigma)(U,V,Z)=L_2Q(g,\widetilde{\nabla}\sigma)(U,V,Z;X,Y),
$$

for all vector fields X, Y, Z, U, V on M. This implies that

$$
R^{\perp}(X,Y)(\nabla_U \sigma)(V,Z) - (\widetilde{\nabla}_{R(X,Y)U}\sigma)(V,Z) - (\widetilde{\nabla}_U \sigma)(R(X,Y)V,Z) - (\widetilde{\nabla}_U \sigma)(V,R(X,Y)Z) = -L_2\{(\widetilde{\nabla}_{(X \wedge_g Y)U}\sigma)(V,Z) + (\widetilde{\nabla}_U \sigma)((X \wedge_g Y)V,Z) + (\widetilde{\nabla}_U \sigma)(V,(X \wedge_g Y)Z)\}.
$$
 (42)

Taking $X = Z = \xi$ in (42), we can infer

(43)
\n
$$
R^{\perp}(\xi, Y)(\widetilde{\nabla}_U \sigma)(V, \xi) - (\widetilde{\nabla}_{R(\xi, Y)U} \sigma)(V, \xi) - (\nabla_U \sigma)(R(\xi, Y)V, \xi) \n- (\widetilde{\nabla}_U \sigma)(V, R(\xi, Y)\xi) = -L_2 \{ (\widetilde{\nabla}_{(\xi \wedge_g Y)U} \sigma)(V, \xi) \n+ (\widetilde{\nabla}_U \sigma)((\xi \wedge_g Y)V, \xi) \n+ (\widetilde{\nabla}_U \sigma)(V, (\xi \wedge_g Y)\xi) \}.
$$

 \Box

Next, we will calculate each of these statements, respectively. Taking into account of (22) , (32) and (33) , we obtain

$$
R^{\perp}(\xi, Y)(\widetilde{\nabla}_U \sigma)(V, \xi) = R^{\perp}(\xi, Y)\{\nabla_U^{\perp} \sigma(V, \xi) - \sigma(\nabla_U V, \xi) - \sigma(\nabla_U \xi, V)\}
$$

\n
$$
= -R^{\perp}(\xi, Y)\sigma(\nabla_U \xi, V)
$$

\n
$$
= -R^{\perp}(\xi, Y)\sigma(-\alpha \phi^2 U - \phi h U, V)
$$

\n(44)
\n
$$
= -\alpha R^{\perp}(\xi, Y)\sigma(U, V) + R^{\perp}(\xi, Y)\phi\sigma(hU, V).
$$

On the other hand, from (5), (23) and (33), by a direct calculation, we can infer

(45)
$$
R(\xi, X)Y = \kappa[g(Y, X)\xi - \eta(Y)X] + \mu[g(hY, X)\xi - \eta(Y)hX]
$$

$$
+ \nu[g(X, \phi hY)\xi - \eta(Y)\phi hX].
$$

Therefore,

$$
(\widetilde{\nabla}_{R(\xi,Y)U}\sigma)(V,\xi) = \nabla^{\perp}_{R(\xi,Y)U}\sigma(V,\xi) - \sigma(\nabla_{R(\xi,Y)U}V,\xi) - \sigma(\nabla_{R(\xi,Y)U}\xi,V)
$$
\n
$$
= -\sigma(\nabla_{R(\xi,Y)U}\xi,V)
$$
\n
$$
= \sigma(\alpha\phi^2 R(\xi,Y)U + \phi hR(\xi,Y)U,V)
$$
\n
$$
= -\alpha\sigma(R(\xi,Y)U,V) + \sigma(\phi hR(\xi,Y)U,V)
$$
\n
$$
= -\alpha\sigma(-\kappa\eta(U)Y - \mu\eta(U)hY - \nu\eta(U)\phi hY,V)
$$
\n
$$
+ \sigma(-\kappa\eta(U)\phi hY - \mu\eta(U)\phi h^2Y - \nu\eta(U)\phi h\phi hY,V)
$$
\n
$$
= \alpha\kappa\eta(U)\sigma(V,Y) + \alpha\mu\eta(U)\sigma(hY,V)
$$
\n
$$
+ \alpha\nu\eta(U)\sigma(\phi hY,V) - \kappa\eta(U)\sigma(\phi hY,V)
$$
\n(46)\n
$$
+ \mu(\kappa + \alpha^2)\eta(U)\sigma(\phi Y,V) + \nu(\kappa + \alpha^2)\sigma(V,Y).
$$

Furthermore, by using (32) and (45), we have

$$
(\widetilde{\nabla}_{U}\sigma)(R(\xi,Y)V,\xi) = \nabla_{U}^{\perp}\sigma(R(\xi,Y)V,\xi) - \sigma(\nabla_{U}R(\xi,Y)V,\xi)
$$
\n
$$
- \sigma(\nabla_{U}\xi, R(\xi,Y)V)
$$
\n
$$
= -\sigma(\nabla_{U}\xi, R(\xi,Y)V) = \sigma(\alpha\phi^{2}U + \phi hU, R(\xi,Y)V)
$$
\n
$$
= \alpha\sigma(\phi^{2}U, R(\xi,Y)V) + \sigma(\phi hU, R(\xi,Y)V)
$$
\n
$$
= -\alpha\sigma(U, -\kappa\eta(V)Y - \mu\eta(V)hY - \nu\eta(V)\phi hY)
$$
\n
$$
+ \sigma(\phi hU, -\kappa\eta(V)Y - \mu\eta(V)hY - \nu\eta(V)\phi hY)
$$
\n
$$
= \kappa\alpha\eta(V)\sigma(U,Y) + \mu\alpha\eta(V)\sigma(hY,U)
$$
\n
$$
+ \alpha\nu\eta(V)\sigma(U,\phi hY) - \kappa\eta(V)\sigma(\phi hU,Y)
$$
\n
$$
= \mu\eta(V)\sigma(\phi hU, hY) + \nu\eta(V)\sigma(hY,U)
$$
\n
$$
+ \alpha\nu\eta(V)\sigma(U, \phi hY) - \kappa\eta(V)\sigma(\phi hU,Y)
$$
\n
$$
+ \mu(\kappa + \alpha^{2})\eta(V)\sigma(\phi U, Y).
$$
\n(47)

The fourth term gives us

(48)
$$
(\nabla_U \sigma)(V, R(\xi, Y)\xi)
$$

$$
= (\nabla_U \sigma)(V, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY).
$$

On the other hand, by the view of (25) , (32) and (33) , we obtain

(49)
\n
$$
\begin{array}{rcl}\n(\widetilde{\nabla}_{(\xi \wedge_g Y)U} \sigma)(V, \xi) & = & \nabla^{\perp}_{(\xi \wedge_g Y)U} \sigma(V, \xi) - \sigma(\nabla_{(\xi \wedge_g Y)U} V, \xi) \\
& = & \sigma(V, \nabla_{(\xi \wedge_g Y)U} \xi) \\
& = & \sigma(V, \alpha \phi^2(\xi \wedge_g Y)U + \phi h(\xi \wedge_g Y)U) \\
& = & -\alpha \sigma(V, (\xi \wedge_g Y)U) + \sigma(V, (\xi \wedge_g Y)U) \\
& = & \alpha \eta(U) \sigma(Y, V) - \eta(U) \sigma(\phi h Y, V),\n\end{array}
$$

and

(50)
\n
$$
(\widetilde{\nabla}_U \sigma)((\xi \wedge_g Y)V, \xi) = \nabla_U^{\perp} \sigma((\xi \wedge_g Y)V, \xi) - \sigma(\nabla_U(\xi \wedge_g Y)V, \xi) \\
- \sigma((\xi \wedge_g Y)V, \nabla_U \xi) \\
= \sigma(\alpha \alpha \phi^2 U + \phi h U, g(Y, V) \xi - \eta(V) Y) \\
= \alpha \eta(V) \sigma(Y, U) - \eta(V) \sigma(Y, \phi h U).
$$

Finally,

$$
(\widetilde{\nabla}_U \sigma)(V, \eta(Y)\xi - Y) = -(\widetilde{\nabla}_U \sigma)(V, Y) + (\widetilde{\nabla}_U \sigma)(V, \eta(Y)\xi)
$$

\n
$$
= -(\widetilde{\nabla}_U \sigma)(V, Y) + \nabla_U^{\perp} \sigma(V, \eta(Y)\xi)
$$

\n
$$
- \sigma(\nabla_U V, \eta(Y)\xi) - \sigma(V, \nabla_U \eta(Y)\xi)
$$

\n
$$
= -(\widetilde{\nabla}_U \sigma)(V, Y) - \sigma(V, U[\eta(Y)]\xi + \eta(Y)\nabla_U \xi)
$$

\n
$$
= -(\widetilde{\nabla}_U \sigma)(V, Y) + \eta(V)\sigma(\alpha\phi^2 U + \phi hU, V)
$$

\n
$$
= -(\widetilde{\nabla}_U \sigma)(V, Y) - \alpha \eta(Y)\sigma(U, V)
$$

\n(51)
$$
+ \eta(Y)\sigma(\phi hU, V).
$$

Substituting (44), (46), (47),(48), (49), (50) and (51) into (43), we reach at

$$
- \alpha R^{\perp}(\xi, Y)\sigma(U, V) + R^{\perp}(\xi, Y)\phi\sigma(U, V) - \kappa \alpha \eta(U)\sigma(V, Y)
$$

- $\mu\alpha\eta(U)\sigma(V,hY) \nu\alpha\eta(U)\sigma(V,\phi hY) + \kappa\eta(U)\sigma(V,\phi hY)$
- $\mu(\kappa + \alpha^2)\eta(U)\sigma(\phi Y, V) \nu(\kappa + \alpha^2)\eta(U)\sigma(V, Y) \kappa\alpha\eta(V)\sigma(U, Y)$

$$
- \alpha \mu \eta(V) \sigma(hY, U) - \alpha \nu \eta(V) \sigma(U, \phi hY) + \kappa \eta(V) \sigma(\phi hU, Y)
$$

$$
- \mu(\kappa + \alpha^2)\eta(V)\sigma(\phi U, Y) + \nu(\kappa + \alpha^2)\eta(V)\sigma(U, Y)
$$

- $-(\nabla_U \sigma)(V, \kappa[\eta(Y)\xi Y] \mu hY \nu \phi hY) = -L_2 \{\alpha \eta(U) \sigma(V, Y)$
- $-\eta(U)\sigma(\phi hY, V) + \alpha \eta(V)\sigma(Y, U) \eta(V)\sigma(Y, \phi hU)$
- $(\nabla_U \sigma)(V, Y) \alpha \eta(Y) \sigma(U, V) + \eta(Y) \sigma(\phi h U, V) \}.$

Here, taking $V = \xi$ in the last equality and using (33), we conclude that

$$
L_2\{\alpha\sigma(U,Y) - \sigma(Y,\phi hU) - (\bar{\nabla}_U\sigma)(Y,\xi)\} = \kappa\alpha\sigma(U,Y) + \alpha\mu\sigma(U,hY) + \alpha\nu\sigma(U,\phi hY) - \kappa\alpha\sigma(\phi hY,U) + \mu(\kappa + \alpha^2)\sigma(\phi U,Y) - \nu(\kappa + \alpha^2)\sigma(U,Y) + (\bar{\nabla}_U\sigma)(\xi,\kappa[\eta(Y)\xi - Y] - \mu hY - \nu\phi hY),
$$

where

(53)
$$
(\widetilde{\nabla}_U \sigma)(Y, \xi) = -\sigma(\nabla_U \xi, Y) = \sigma(\alpha \phi^2 U + \phi h U, Y) = -\alpha \sigma(U, Y) + \phi \sigma(hU, Y)
$$

and

$$
(\widetilde{\nabla}_U \sigma)(\xi, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY)
$$

= $-\sigma(\nabla_U \xi, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY)$
= $\sigma(\alpha \phi^2 U + \phi hU, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY)$
= $-\alpha \sigma(U, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY)$
+ $\sigma(\phi hU, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY)$
= $\kappa \alpha \sigma(U, Y) + \alpha \mu \sigma(hY, U) + \alpha \nu \sigma(\phi hY, U)$
(54) $-\kappa \sigma(\phi hU, Y) + \mu(\kappa + \alpha^2) \sigma(\phi U, Y) - \nu(\kappa + \alpha^2) \sigma(U, Y).$
Substituting (53) and (54) into (52), we get

(55)
$$
[\alpha L_2 - \kappa \alpha + \nu(\kappa + \alpha^2)]\sigma(U, Y) + [\kappa - L_2 - \alpha \nu]\phi\sigma(hU, Y)
$$

$$
- \mu(\kappa + \alpha^2)\phi\sigma(U, Y) - \alpha\mu\sigma(hU, Y) = 0.
$$

If hU is written instead of U in (55) and using (6), (9) and (33), we have

$$
[\alpha L_2 - \kappa \alpha + \nu(\kappa + \alpha^2)]\sigma(hU, Y) - (\kappa + \alpha^2)[\kappa - L_2 - \alpha \nu]\phi\sigma(U, Y)
$$

(56)
$$
- \mu(\kappa + \alpha^2)\phi\sigma(hU, Y) + \alpha\mu(\kappa + \alpha^2)\sigma(U, Y) = 0.
$$

From (55) and (56), for $\kappa \neq 0$, we obtain

$$
[(L_2 - \kappa)^2 - (\kappa + \alpha^2)(\nu^2 - \mu^2)]\sigma(U, Y) + 2\mu\nu(\kappa + \alpha^2)\phi\sigma(U, Y) = 0.
$$

Since the vectors $\phi\sigma(U, Y)$ and $\sigma(U, Y)$ are orthogonal, we conclude that

Since the vectors $\phi \sigma(U, Y)$ and $\sigma(U, Y)$ are orthogonal, we conclude that M is a totally geodesic or

$$
\mu\nu(\kappa + \alpha^2) = 0,
$$

and

$$
L_2 = \kappa \mp \sqrt{(\kappa + \alpha^2)(\nu^2 - \nu^2)}.
$$

Thus, the proof is completed.

From Theorem 2.5, we have the following corollary.

Corollary 2.6. Let M be an invariant submanifold of an almost α - cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. Then, M is 2-semiparallel if and only if M is totally geodesic.

 \Box

Theorem 2.7. Let M be an invariant Ricci-generalized pseudoparallel submanifold of an almost α -cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, q)$. Then, M is either totally geodesic submanifold or the functions L_3 , κ, μ, ν and α satisfy the condition

$$
L_3 = \frac{1}{2n} \left(1 \mp \frac{1}{\kappa} \sqrt{(\kappa + \alpha^2)(\nu^2 - \mu^2)} \right), \quad \mu \nu (\kappa + \alpha^2) = 0.
$$

Proof. We suppose that M is an invariant Ricci-generalized pseudoparallel. Then there exists a function ${\cal L}_3$ on ${\cal M}$ such that

$$
(R(X,Y)\cdot \sigma)(U,V)=L_3Q(S,\sigma)(U,V;X,Y),
$$

for all vector fields X, Y, U, V on M . This implies that

$$
R^{\perp}(X,Y)\sigma(U,V) = \sigma(R(X,Y)U,V) - \sigma(U,R(X,Y)V)
$$

\n
$$
= -L_3\{\sigma((X \wedge_S Y)U,V) + \sigma(U,(X \wedge_S Y)V)\}
$$

\n
$$
= -L_3\{\sigma(X,V)S(U,Y) - \sigma(Y,V)S(X,U)
$$

\n(57)
\n
$$
+ \sigma(U,X)S(Y,V) - \sigma(U,Y)S(X,V)\}.
$$

By a direct calculation, we obtain

(58)
$$
S(X,\xi) = 2n\kappa\eta(X).
$$

Taking $U = \xi$ in (57) and by view means of (5), (33) and (58), we have

$$
\sigma(R(X,Y)\xi,V) = 2n\kappa L_2\{\sigma(X,V) - \sigma(Y,V)\},\
$$

that is,

$$
2n\kappa L_2\{\sigma(X,V) - \sigma(Y,V)\} = \sigma(\kappa[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY],V) - \eta(X)hY + \nu[\eta(Y)\phi hX - \eta(X)\phi hY],V).
$$

This yields to

(59)
$$
\kappa(2nL_3-1)\sigma(X,V) = \mu\sigma(hX,V) + \nu\phi\sigma(hX,V).
$$

If hX is written instead of X and using (6) and (33), we get

(60)
$$
\kappa(2nL_3-1)\sigma(hX,V) = -(\kappa+\alpha^2)\{\mu\sigma(X,V) - \nu\phi\sigma(X,V)\}.
$$

From (59) and (60), we can derive

$$
{\kappa^2 (2nL_3 - 1)^2 + (\kappa + \alpha^2)(\mu^2 - \nu^2)} \sigma(X, V)
$$

= -2\mu\nu(\kappa + \alpha^2) \phi \sigma(X, V).

Since σ and $\phi\sigma$ are orthogonal vectors, it follows that

$$
\kappa^2 (2nL_3 - 1)^2 + (\kappa + \alpha^2)(\mu^2 - \nu^2) = 0, \quad \mu\nu(\kappa + \alpha^2) = 0,
$$

which proves our assertions.

534 Mehmet Atçeken and Gülsüm Yüca

Theorem 2.8. Let M be an invariant 2-Ricci-generalized pseudoparallel submanifold of an almost α -cosymplectic (κ, μ, ν) -space $M^{2n+1}(\phi, \xi, \eta, g)$. Then, M is either totally geodesic submanifold or the function L_4 satisfies

$$
L_4 = \frac{1}{2n} \left(1 \mp \frac{1}{\kappa} \sqrt{(\kappa + \alpha^2)(\nu^2 - \mu^2)} \right) \quad \text{and} \quad \mu \nu (\kappa + \alpha^2) = 0.
$$

Proof. Given M is an invariant 2-Ricci-generalized pseudoparallel submanifold, we have

$$
(\widetilde{R}(X,Y)\cdot\widetilde{\nabla}\sigma)(U,V,W)=L_4Q(S,\widetilde{\nabla}\sigma)(U,V,W;X,Y)
$$

for all vector fields X, Y, U, V, W on M . That means

$$
R^{\perp}(X,Y)(\widetilde{\nabla}_U\sigma)(V,W) - (\widetilde{\nabla}_{R(X,Y)U}\sigma)(V,W) - (\widetilde{\nabla}_U\sigma)(R(X,Y)V,W) - (\widetilde{\nabla}_U\sigma)(V,R(X,Y)W) = -L_4\{(\widetilde{\nabla}_{(X\wedge_S Y)U}\sigma)(V,W) + (\widetilde{\nabla}_U\sigma)((X\wedge_S Y)V,W) + (\widetilde{\nabla}_U\sigma)(V,(X\wedge_S Y)W)\}.
$$

Taking $X = V = \xi$ in (61), we obtain

$$
R^{\perp}(\xi, Y)(\widetilde{\nabla}_U \sigma)(\xi, W) - (\widetilde{\nabla}_{R(\xi, Y)U} \sigma)(\xi, W) - (\widetilde{\nabla}_U \sigma)(R(\xi, Y)\xi, W) - (\widetilde{\nabla}_U \sigma)(\xi, R(\xi, Y)W) = -L_4\{(\widetilde{\nabla}_{(\xi \wedge_S Y)U} \sigma)(\xi, W) + (\widetilde{\nabla}_U \sigma)(\xi \wedge_S Y)\xi, W) + (\widetilde{\nabla}_U \sigma)(\xi, (\xi \wedge_S Y)W)\}.
$$

Now, let us calculate each of these terms separately. First,

(63)
\n
$$
R^{\perp}(\xi, Y)\{-\sigma(\nabla_U \xi, W)\} = R^{\perp}(\xi, Y)\sigma(\alpha \phi^2 U + \phi h U, W)
$$
\n
$$
= -\alpha R^{\perp}(\xi, Y)\sigma(U, W)
$$
\n
$$
+ R^{\perp}(\xi, Y)\sigma(\phi h U, W).
$$

Making use of (6) , (32) and (45) , we can calculate the second term as

$$
(\widetilde{\nabla}_{R(\xi,Y)U}\sigma)(W,\xi) = -\sigma(\nabla_{R(\xi,Y)U}\xi,W) = \alpha\sigma(\phi^2 R(\xi,Y)U,W) \n+ \sigma(\phi h \nabla_{R(\xi,Y)U}, W) \n= \alpha\kappa\eta(U)\sigma(Y,W) + \alpha\mu\eta(U)\sigma(hY,W) \n+ \alpha\nu\eta(U)\sigma(\phi hY,W) \n- \kappa\eta(U)\sigma(\phi hY,W) + \mu(\kappa + \alpha^2)\eta(U)\sigma(\phi Y,W) \n- \nu\eta(U)\sigma(\phi h\phi hY,W) \n= \alpha\kappa\eta(U)\sigma(Y,W) + \alpha\mu\eta(U)\sigma(hY,W) \n+ \alpha\nu\eta(U)\sigma(\phi hY,W) \n- \kappa\eta(U)\sigma(\phi hY,W) + \mu\eta(U)(\kappa + \alpha^2)\sigma(\phi Y,W) \n= \nu(\kappa + \alpha^2)\eta(U)\sigma(Y,W),
$$

In view of (9) and (22) , we observe

(65)
$$
(\nabla_U \sigma)(R(\xi, Y)\xi, W)
$$

$$
= (\tilde{\nabla}_U \sigma)(\kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY, W).
$$

In the same way,

$$
(\widetilde{\nabla}_U \sigma)(R(\xi, Y)W, \xi) = -\sigma(\nabla_U \xi, R(\xi, Y)W) = \sigma(\alpha \phi^2 U + \phi hU, R(\xi, Y)W)
$$

\n
$$
= \alpha \kappa \eta(W)\sigma(U, Y) + \alpha \mu \eta(W)\sigma(hY, W)
$$

\n
$$
+ \alpha \nu \eta(W)\sigma(U, \phi hY) - \kappa \eta(W)\sigma(\phi hU, Y)
$$

\n
$$
- \mu \eta(W)\sigma(\phi h^2 U, Y) + \nu \eta(W)\sigma(h^2 U, Y)
$$

\n
$$
= \alpha \kappa \eta(W)\sigma(U, Y) + \alpha \mu \eta(W)\sigma(hY, W)
$$

\n
$$
+ \alpha \nu \eta(W)\sigma(U, \phi hY) - \kappa \eta(W)\sigma(\phi hU, Y)
$$

\n
$$
+ \mu(\kappa + \alpha^2) \eta(W)\sigma(\phi U, Y),
$$

\n(66)

(67)
$$
(\widetilde{\nabla}_{(\xi \wedge_S Y)U} \sigma)(\xi, W) = -\sigma(\nabla_{(\xi \wedge_S Y)U} \xi, W)
$$

\n
$$
= \sigma(\alpha \phi^2(\xi \wedge_S Y)U + \phi h(\xi \wedge_S Y)U, W)
$$

\n
$$
= -\alpha \sigma(S(Y, U)\xi - S(\xi, U)Y, W)
$$

\n
$$
+ \sigma(\phi h[S(Y, U)\xi - S(\xi, U)Y], W)
$$

\n
$$
= 2n\kappa \eta(U)\{\alpha \sigma(Y, W) - \sigma(\phi hY, W)\},
$$

$$
(\nabla_U \sigma)((\xi \wedge_S Y)\xi, W) = -\sigma(\nabla_U(\xi \wedge_S Y)\xi, W)
$$

\n
$$
= (\widetilde{\nabla}_U \sigma)(S(\xi, Y)\xi - S(\xi, \xi)Y, W)
$$

\n
$$
= 2n\{(\nabla_U \sigma)(\kappa \eta(Y)\xi, W) - (\nabla_U \sigma)(\kappa Y, W)\}
$$

\n
$$
= 2n\{-\sigma(U[\kappa \eta(Y)]\xi + \kappa \eta(Y)\nabla_U \xi, W)
$$

\n
$$
- (\nabla_U \sigma)(\kappa Y, W)\}
$$

\n
$$
= 2n\{-\kappa \alpha \eta(Y)\sigma(U, W) + \kappa \eta(Y)\sigma(\phi hU, W)
$$

\n(68)

Finally,

(69)
\n
$$
(\widetilde{\nabla}_U \sigma)(\xi, (\xi \wedge_S Y)W) = -\sigma(\nabla_U \xi, (\xi \wedge_S Y)W)
$$
\n
$$
= \sigma(\alpha \phi^2 U + \phi h U, S(Y, W) \xi - S(\xi, W)Y)
$$
\n
$$
= 2n\kappa \alpha \eta(W) \sigma(U, Y)
$$
\n
$$
= 2n\kappa \eta(W) \sigma(\phi h U, Y).
$$

536 Mehmet Atçeken and Gülsüm Yüca

Consequently, substituting (63), (64), (65), (66), (67), (68) and (69) into (62), we reach at

$$
- \alpha R^{\perp}(\xi, Y)\sigma(U, W) + R^{\perp}(\xi, Y)\sigma(\phi hU, W) - \alpha\kappa\eta(U)\sigma(Y, W)
$$

\n
$$
- \alpha\mu\eta(U)\sigma(hY, W) - \alpha\nu\eta(U)\sigma(\phi hY, W) + \kappa\eta(U)\sigma(\phi hY, W)
$$

\n
$$
- \mu\eta(U)(\kappa + \alpha^2)\sigma(\phi Y, W) + \nu(\kappa + \alpha^2)\eta(U)\sigma(Y, W)
$$

\n
$$
- (\nabla_{U}\sigma)(\kappa[\eta(Y)\xi - Y] - \mu hY - \nu\phi hY, W) - \alpha\kappa\eta(W)\sigma(U, Y)
$$

\n
$$
- \alpha\mu\eta(W)\sigma(hY, W) - \alpha\nu\eta(W)\sigma(U, \phi hY) + \kappa\eta(W)\sigma(\phi hU, Y)
$$

\n
$$
= \mu(\kappa + \alpha^2)\eta(W)\sigma(\phi U, Y) + \nu(\kappa + \alpha^2)\eta(W)\sigma(U, Y)
$$

\n
$$
= -L_{4}\{2n\kappa\alpha\eta(U)\sigma(Y, W) - 2n\kappa\eta(U)\sigma(\phi hY, W) - 2n\kappa\alpha\eta(Y)\sigma(U, Y)
$$

\n
$$
+ 2n\kappa\eta(Y)\sigma(\phi hU, W) - 2n(\nabla_{U}\sigma)(\kappa Y, W) + 2n\alpha\kappa\eta(W)\sigma(U, Y)
$$

\n
$$
- 2n\kappa\eta(W)\sigma(\phi hU, Y)\}.
$$

In the last equality, putting $W = \xi$, we have

$$
2nL_4\{(\nabla_U \sigma)(\kappa Y, \xi) - \kappa \alpha \sigma(U, Y) + \kappa \sigma(\phi h U, Y)\} = \nu(\kappa + \alpha^2) \sigma(U, Y)
$$

$$
- \alpha \kappa \sigma(U, Y) - \alpha \mu \sigma(hY, U) - \alpha \nu \sigma(\phi h U, Y)
$$

$$
- \mu(\kappa + \alpha^2) \sigma(\phi U, Y) + \kappa \sigma(\phi h U, Y)
$$

$$
- (\nabla_U \sigma)(\kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY, \xi),
$$

where

(71)
$$
(\nabla_U \sigma)(\kappa Y, \xi) = -\sigma(\nabla_U \xi, \kappa Y) = \sigma(\alpha \phi^2 U + \phi h U, \kappa Y) = -\alpha \kappa \sigma(U, Y) + \kappa \sigma(\phi h U, Y),
$$

and

$$
(\nabla_U \sigma)(\kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY, \xi)
$$

= $-\sigma(\nabla_U \xi, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY)$
= $\sigma(\alpha \phi^2 U + \phi hU, \kappa[\eta(Y)\xi - Y] - \mu hY - \nu \phi hY)$
= $\alpha \kappa \sigma(U, Y) + \alpha \mu \sigma(U, hY) + \alpha \nu \sigma(U, \phi hY)$
(72) $-\kappa \sigma(\phi hU, Y) + \mu(\kappa + \alpha^2) \sigma(\phi U, Y) - \nu(\kappa + \alpha^2) \sigma(U, Y).$

(71) and (72) are put in (70), we conclude that

(73)
$$
\begin{aligned} [\kappa \alpha (2nL_4-1) + (\kappa + \alpha^2)(\nu - \mu \phi)]\sigma(U,Y) \\ &- [\kappa (2nL_4-1)\phi + \alpha(\nu \phi + \mu)]\sigma(hU,Y) = 0. \end{aligned}
$$

Here hU is written instead of U and taking into account of (6) and (33), we have

$$
[\kappa\alpha(2nL_4-1) + (\kappa+\alpha^2)(\nu-\mu\phi)]\sigma(hU,Y)
$$

(74) +
$$
[\kappa(2nL_4-1)\phi+\alpha(\nu\phi+\mu)](\kappa+\alpha^2)\sigma(U,Y)=0.
$$

From (73) and (74), it follows for $\kappa \neq 0$,

$$
[\kappa^{2}(2nL_{4} - 1)^{2} + (\mu^{2} - \nu^{2})(\kappa + \alpha^{2})]\sigma(U, V) + 2\mu\nu(\kappa + \alpha^{2})\phi\sigma(U, V) = 0.
$$

This proves our assertion.

References

- [1] M. Atçeken and P. Uygun, Characterizations for totally geodesic submanifolds of (κ, μ) paracontact metric manifolds, Korean J. Math. 28 (2020), no. 3, 555–571.
- [2] M. Atçeken, Ü. Yildirim, and S. Dirik, Pseudoparallel invariant submanifolds of $(LCS)_n$ -manifolds, Korean J. Math. 28 (2020), no. 2, 275–284.
- [3] A. Carriazo and V. Martin-Molina, Almost cosymplectic and almost Kenmotsu (κ, μ, ν) spaces, Mediterr. J. Math.10 (2013) 1551–1571.
- [4] P. Dacko and Z. Olszak, On almost cosympletic (κ, μ, ν) -spaces, Banach Center Publ., 211–220, 69 Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2005.
- [5] P. Dacko and Z. Olszak, On almost cosymplectic $(-1, \mu, o)$ -spaces, Cent. Eur. J. Math. 3 (2005), no. 2, 318–330.
- [6] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J.4 (1981), no.1, 1–27.
- [7] T. W. Kim and H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 841–846.
- [8] T. Koufogiorgos, M. Markellos, and V. J. Papantoniou, The harmonicity of the Reeb vector fields on contact 3-manifolds, Pasific J. Math. 234 (2008), no.2, 325-344.
- [9] T. Mert and M. Atçeken, Some important properties of almost Kenmotsu (κ, μ, ν) space on the concircular curvature tensor, Fundam. J. Math. Appl. 6 (2023), no.1, 51–60.
- [10] H. Ozturk, C. Murathan, N. Aktan, and A. T. Vanlı, Almost α-cosymplectic f-manifolds. Analele S. Tint. Ifice Ale Universitat II. Al.I. Cuza Din Iasi (S.N.) Matematica, Tomul LX, 2014.
- [11] S. Sular, C. Özgür, and C. Murathan, *Pseudoparallel anti-invariant submanifolds of* Kenmotsu manifolds, Hacet. J. Math. Stat. 39 (2010), no.4, 535–543.
- [12] I. Vaisman, Conformal changes of almost contact metric structures, Lecture Notes in Math., 792 Springer, Berlin, 1980, ,435–443.
- [13] S. Ozturk and H. Ozturk, Certain class of almost α-cosymplectic manifolds. J. Math. (2021), Art. ID 9277175.

Mehmet ATCEKEN

Aksaray University, Faculty of Arts and Sciences, Department of Mathematics, 68100, Aksaray, TURKEY

E-mail: mehmet.atceken382@gmail.com

Gülsüm YÜCA

Aksaray University, Faculty of Arts and Sciences, Department of Mathematics, 68100, Aksaray, TURKEY E-mail: gulsumbicer@gmail.com