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INVARIANT PSEUDOPARALLEL SUBMANIFOLDS OF AN

ALMOST α-COSYMPLECTIC (κ, µ, ν)-SPACE

Mehmet Atçeken and Gülsüm Yüca∗

Abstract. In this article, we research the conditions for invariant sub-

manifolds in an almost α-cosymplectic (κ, µ, ν) space to be pseudo-parallel,

Ricci-generalized pseudo-parallel and 2-Ricci-generalized pseudo-parallel.
We think that the results for the relations among the functions will con-

tribute to differential geometry.

1. Introduction

An almost contact manifold is an odd-dimensional manifold M̃2n+1 which
carries a field ϕ of endomorphism of the tangent space, a vector field ξ, called
characteristic, and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,(1)

where I denotes the identity mapping of tangent space at each point of M .
From (1), it follows

ϕξ = 0, η ◦ ϕ = 0 rank(ϕ) = 2n.(2)

An almost contact manifold M̃2n+1(ϕ, ξ, η) is said to be normal if the tensor
field N = [ϕ, ϕ] + 2dη ⊗ ξ = 0, where [ϕ, ϕ] denote the Nijenhuis tensor field

of ϕ. It is well known that any almost contact manifold M̃2n+1(ϕ, ξ, η) has a
Riemannian metric such that

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),(3)

for any vector fields X,Y on M̃ [3]. Such metric g is called compatible metric

and the manifold M̃2n+1 together with the structure (ϕ, η, ξ, g) is called an

almost contact metric manifold and is denoted by M̃2n+1(ϕ, η, ξ, g). The 2-

form Φ of M̃2n+1(ϕ, η, ξ, g) is defined as Φ(X,Y ) = g(ϕX, Y ), and is called the
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fundamental form of M̃2n+1(ϕ, η, ξ, g). If the Nijenhuis tensor vanishes, defined
by

Nϕ(X,Y ) = [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]− ϕ2[X,Y ] + 2dη(X,Y )ξ,

then M̃2n+1(ϕ, η, ξ, g) is said to be normal. It is obvious that a normal al-
most Kenmotsu is said to be Kenmotsu manifold. On the other hand, an al-

most contact metric manifold is known as Kenmotsu if and only if (∇̃Xϕ)Y =
g(ϕX, Y )ξ − η(Y )ϕX. An almost contact metric structure is cosymplectic if

and only if ∇̃η and ∇̃Φ are closed.

In the light of the above definitions, the generalization of almost Kenmotsu

manifold, M̃2n+1(ϕ, η, ξ, g) is called almost α-Kenmotsu manifold if dη = 0 and
dΦ = 2αη ∧ Φ, where α is a nonzero real constant[4].

As a generalization of these, a new notation has been introduced of an al-
most α-cosymplectic manifold which is defined dη = 0 and dΦ = 2αη ∧ Φ for
a real number α. A normal almost α-cosymplectic manifold is said to be α-
cosymplectic manifold, and it is either cosymplectic or α-Kenmotsu under the
condition α = 0 or α ̸= 0, respectively[6, 12].

It should be noted that almost α-cosymplectic manifolds are generalizations
of almost α-Kenmotsu and almost cosymplectic manifolds.

It is well known that on a contact metric manifold M̃2n+1(ϕ, ξ, η, g), the
tensor h, defined by 2h = Lξϕ, the following equalities are satisfied;

∇̃Xξ = −ϕX − ϕhX, hϕ+ ϕh = 0, trh = trϕh = 0, hξ = 0,(4)

where ∇̃ is the Levi-Civita connection on M̃2n+1[4].

In [10], the authors studied the almost α-cosymplectic (κ, µ, ν)-spaces under
different conditions and gave an example in dimension 3.

Going beyond generalized (κ, µ)-spaces, in [8], the notion of (κ, µ, ν)-contact
metric manifold was introduced as follows[10];

R̃(X,Y )ξ = η(Y )[κI + µh+ νϕh]X − η(X)[κI + µh+ νϕh]Y,(5)

for some smooth functions κ, µ and ν on M̃2n+1, where R̃ denotes the Rie-

mannian curvature tensor of M̃2n+1 and X,Y are vector fields on M̃2n+1.

They proved that this type of manifold is intrinsically related to the har-
monicity of the Reeb vector on contact metric 3-manifolds. Some authors have
studied manifolds satisfying condition (5) but a non-contact metric structure.
In this connection, P. Dacko and Z. Olszak defined an almost cosymplectic
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(κ, µ, ν)-space as an almost cosymplectic manifold that satisfies (5), but with
κ, µ and ν functions varying exclusively in the direction of ξ in[4]. Later exam-
ples have been given for this type manifold[5].

Pseudoparallel submanifolds have been studied in different structures and
working on[2, 1, 11]. In the present paper, we generalize the ambient space
and research cases of existence or non-existence of pseudoparallel submanifold
in α-cosymplectic (κ, µ, ν)-space.

Proposition 1.1. Given M̃2n+1(ϕ, ξ, η, g) an almost α-cosymplectic (κ, µ, ν)-
space, then

h2 = (κ+ α2)ϕ2,(6)

R̃(ξ,X)Y = κ[g(X,Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX]

+ ν[g(ϕhX, Y )ξ − η(Y )ϕhX](7)

(∇̃Xϕ)Y = g(αϕX + hX, Y )ξ − η(Y )(αϕX + hX)(8)

∇̃Xξ = −αϕ2X − ϕhX,(9)

for all vector fields X,Y on M̃2n+1[3].

Proof. From (5), we obtain

R̃(X, ξ)ξ = −κϕ2X + µhX + νϕhX.(10)

Taking ϕX instead of X in (10), we have

R̃(ϕX, ξ)ξ = κϕX + µhϕX + νϕhϕX.(11)

Applying ϕ to (11) and after the necessary revisions are made, we reach at

ϕR̃(ϕX, ξ)ξ = κϕ2X + µhX + νϕhX.(12)

(10) and (12) give us

R̃(X, ξ)ξ − ϕR̃(ϕX, ξ)ξ = −2κϕ2X.(13)

On the other hand, from ([13]) we know that

R̃(X, ξ)ξ = α2[η(X)ξ −X] + αϕhX + (∇̃ξϕh)X − (∇̃Xϕh)ξ

= α2ϕ2X + 2αϕhX + µhX − h2X.(14)

This implies that

R̃(ϕX, ξ)ξ = −α2ϕX + 2αhX + µϕhϕX + νhX − h2ϕX.

Applying ϕ to the last equality, one can easily see

ϕR̃(ϕX, ξ)ξ = −α2ϕ2X + 2αϕhX + µhX + νϕhX + h2X.(15)

From (14) and (15), we verify

R̃(X, ξ)ξ − ϕR̃(ϕX, ξ)ξ = 2[α2ϕ2 − h2]X.(16)
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(13) and (18) give us (6).
Also, from (5), we have

g(R̃(X,Y )ξ, Z) = κg(η(Y )X − η(X)Y,Z) + µg(η(Y )hX − η(X)hY,Z)

+ νg(η(Y )ϕhX − η(X)ϕhY, Z),

for all X,Y, Z ∈ Γ(TM̃). By using the properties of R̃ and ϕ ◦ h + h ◦ ϕ = 0,
we conclude that

g(R̃(ξ, Z)X,Y ) = κη(Y )g(X,Z)− κη(X)g(Y,Z) + µη(Y )g(hX,Z)

− µη(X)g(Y, hZ) + νη(Y )g(ϕhX,Z)− νη(X)g(Y, ϕhZ).(17)

Here, one can easily see

R̃(ξ, Z)X = κ[g(X,Z)ξ − η(X)Z] + µ[g(hX,Z)ξ − η(X)hZ]

+ ν[g(ϕhX,Z)ξ − η(X)ϕhZ].

This completes the proof of (7).

Almost α-cosymplectic manifolds are special classes of almost α-cosymplectic
f -manifolds, for the proof of (8), one can see [10]. So we do not need to give
the proof here.

Taking Y = ξ in (8), we observe

(∇̃Xϕ)ξ = −ϕ∇̃Xξ = −αϕX − hX.(18)

Applying ϕ to (18) and after the necessary revisions are made, we can verify
(9). Thus, the proof is completed.

Now, letM be an immersed submanifold of an almost α-cosymplectic (κ, µ, ν)-

space M̃2n+1. By Γ(TM) and Γ(T⊥M), we denote the tangent and normal

subspaces of M in M̃ . Then, the Gauss and Weingarten formulae are, respec-
tively, given by

∇̃XY = ∇XY + σ(X,Y ),(19)

and

∇̃XV = −AV X +∇⊥
XV,(20)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where ∇ and ∇⊥ are the induced
connections on M and Γ(T⊥M) and σ and A are called the second funda-
mental form and shape operator of M , respectively, Γ(TM) denote the set
differentiable vector fields on M . They are related by

g(AV X,Y ) = g(σ(X,Y ), V ).(21)

The covariant derivative of σ is defined by

(∇̃Xσ)(Y, Z) = ∇⊥
Xσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇XZ),(22)
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for all X,Y, Z ∈ Γ(TM). If ∇̃σ = 0, then the submanifold is called its second
fundamental form parallel.

By R, we denote the Riemannian curvature tensor of the submanifold M ,
we have the following Gauss equation

R̃(X,Y )Z = R(X,Y )Z +Aσ(X,Z)Y −Aσ(Y,Z)X + (∇̃Xσ)(Y,Z)

− (∇̃Y σ)(X,Z),(23)

for all X,Y, Z ∈ Γ(TM).

For a (0, k)-type tensor field T , k ≥ 1 and a (0, 2)-type tensor field A on a
Riemannian manifold (M, g), Q(A, T )-tensor field is defined by

Q(A, T )(X1, X2, ..., Xk;X,Y ) = −T ((X ∧A Y )X1, X2, ..., Xk)...

− T (X1, X2, ...Xk−1, (X ∧A Y )Xk),(24)

for all X1, X2, ..., Xk, X, Y ∈ Γ(TM)[9], where

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y.(25)

Definition 1.2. A submanifold of a Riemannian manifold (M, g) is said
to be pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel and 2-
Ricci-generalized pseudoparallel if

R̃ · σ and Q(g, σ)

R̃ · ∇̃σ and Q(g, ∇̃σ)

R̃ · σ and Q(S, σ)

R̃ · ∇̃σ and Q(S, ∇̃σ)

are linearly dependent, respectively[11].

Equivalently, these cases can be explained by the following way;

R̃ · σ = L1Q(g, σ),(26)

R̃ · ∇̃σ = L2Q(g, ∇̃σ),(27)

R̃ · σ = L3Q(S, σ),(28)

R̃ · ∇̃σ = L4Q(S, ∇̃σ),(29)

where the functions L1, L2, L3 and L4 are, respectively, defined on

M1 = {x ∈ M : σ(x) ̸= g(x)}, M2 = {x ∈ M : ∇̃σ(x) ̸= g(x)}, M3 = {x ∈ M :

S(x) ̸= σ(x)} and M4 = {x ∈ M : S(x) ̸= ∇̃σ(x)} and S denotes the Ricci
tensor of M .

Particularly, if L1 = 0(resp. L2 = 0), the submanifold is said to be semi-
parallel(resp. 2-semiparallel)[1].
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2. Invariant Submanifolds of an almost α-cosymplectic (κ, µ, ν)
Space

Now, let M̃2n+1(ϕ, ξ, η, g) be an almost α-cosymplectic (κ, µ, ν)-space and

M an immersed submanifold of M̃2n+1. If ϕ(TxM) ⊆ TxM , for each point

x ∈ M , then M is said to be an invariant submanifold of M̃2n+1(ϕ, ξ, η, g)
with respect to ϕ. Hence, we will easily see that an invariant submanifold with
respect to ϕ is also invariant with respect to h.

Proposition 2.1. Let M be an invariant submanifold of an almost α-

cosymplectic (κ, µ, ν)-space M̃2n+1(ϕ, ξ, η, g) such that ξ tangent to M . Then,
the following equalities hold on M ;

R(X,Y )ξ = κ[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]

+ ν[η(Y )ϕhX − η(X)ϕhY ](30)

(∇Xϕ)Y = g(αϕX + hX, Y )ξ − η(Y )(αϕX + hX)(31)

∇Xξ = −αϕ2X − ϕhX(32)

ϕσ(X,Y ) = σ(ϕX, Y ) = σ(X,ϕY ), σ(X, ξ) = 0,(33)

where ∇, σ and R denote the induced Levi-Civita connection, the shape oper-
ator and Riemannian curvature tensor of M , respectively.

Proof. Since M is an invariant submanifold, from (9) and (19), we have

σ(X, ξ) = 0, and AV ξ = 0,

for all X ∈ Γ(TM) and V ∈ Γ(T⊥M). Also by using (23), we obtain (30).
On the other hand, tangent and normal components of expanding

(∇̃Xϕ)Y = ∇̃XY − ϕ∇̃XY

= ∇XϕY + σ(X,ϕY )− ϕ∇XY − ϕσ(X,Y )

= (∇Xϕ)Y + σ(X,ϕY )− ϕσ(X,Y )

give us to (31) and (33), respectively.
Finally, the Gauss formulae and (9), we have

∇̃Xξ = ∇Xξ + σ(ξ,X) = −αϕ2X − ϕhX,

for all X ∈ Γ(TM). Also tangent components of this give (32).
Furthermore, by using (7), (23) and the last term of (33), we get (30).

In the rest of this paper, we will assume that M is an invariant submanifold

of an α-cosymplectic (κ, µ, ν)-space M̃2n+1(ϕ, ξ, η, g). In this case, from (4),
we have

ϕhX = −hϕX,(34)

for allX ∈ Γ(TM), that is, M is also invariant with respect to the tensor field h.
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We need the following theorem to guarantee for the second fundamental
form σ is not always identically zero.

Theorem 2.2. LetM be an invariant submanifold of an almost α-cosymplectic
(κ, µ, ν)-space M2n+1(ϕ, ξ, η, g). Then, the second fundamental form σ of M
is parallel M is totally geodesic provided κ ̸= 0.

Proof. Let us suppose that σ is parallel. From (22), we have

(∇̃Xσ)(Y, Z) = ∇⊥
Xσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇XZ) = 0,(35)

for all vector fields X,Y and Z on M2n+1. Setting Z = ξ in (35) and taking
into account (32) and (33), we have

σ(∇Xξ, Y ) = −σ(αϕ2X + ϕhX, Y ) = 0,

that is,

−ασ(X,Y ) + ϕσ(hX, Y ) = 0.(36)

Writing hX of X in (36) and by using (6) and (33), we obtain

−ασ(hX, Y ) + ϕσ(h2X,Y ) = 0,

ασ(hX, Y ) + (α2 + κ)ϕσ(X,Y ) = 0.(37)

From (36) and (37), we conclude that κσ(X,Y ) = 0, which proves our assertion.

Theorem 2.3. Let M be an invariant pseudoparallel submanifold of an al-
most α cosymplectic (κ, µ, ν)-space M2n+1(ϕ, ξ, η, g). Then, M is either totally

geodesic submanifold or the function L1 satisfies L1 = κ∓
√

(ν2 − µ2)(κ+ α2),
µν(κ+ α2) = 0.

Proof. We suppose that M is an invariant pseudoparallel submanifold of an
almost α-cosymplectic M2n+1(ϕ, ξ, η, g)-space. Then, there exists a function
L1 on M such that

(R(X,Y ) · σ)(U, V ) = L1Q(g, σ)(U, V ;X,Y ),

for all vector fields X,Y, U, V on M . By means of (24) and (26), we have

R⊥(X,Y )σ(U, V ) − σ(R(X,Y )U, V )− σ(U,R(X,Y )V )

= −L1{σ((X ∧g Y )U, V ) + σ(U, (X ∧g Y )V )}.(38)

Here taking Y = U = ξ in (38) and taking into account of Proposition 2.1, we
obtain

R⊥(X, ξ)σ(ξ, V ) − σ(R(X, ξ)ξ, V )− σ(ξ,R(X, ξ)V )

= −L1{σ((X ∧g ξ)ξ, V ) + σ(ξ, (X ∧g ξ)V )}
= −L1{σ(X − η(X)ξ, V ) + σ(ξ, η(V )X − g(X,V )ξ)},

that is,

σ(R(X, ξ)ξ, V ) = L1σ(X,V ).(39)
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By means of Proposition 2.1 and (5), we conclude that

(L1 − κ)σ(X,V ) = µσ(hX, V ) + νσ(ϕhX, V ).(40)

If hX is substituted for X at (40) and making use of (6) and (33), we obtain

(L− κ)σ(hX, V ) = −(κ+ α2)[µσ(X,V ) + νϕσ(X,V )].(41)

From (40) and (41), we reach at

[(L1 − κ)2 + (κ+ α2)(µ2 − ν2)]σ(X,V ) = −2µν(κ+ α2)ϕσ(X,V ).

This yields to

(L1 − κ)2 + (κ+ α2)(µ2 − ν2) = 0, µν(κ+ α2) = 0 or σ = 0.

This completes the proof.

From the Theorem 2.3, we have the following corollary.

Corollary 2.4. Let M be an invariant submanifold of an almost α- cosym-
plectic (κ, µ, ν)-space M2n+1(ϕ, ξ, η, g). Then, M is semiparallel if and only if
M is totally geodesic.

Theorem 2.5. Let M be an invariant submanifold of an almost α- cosym-
plectic (κ, µ, ν)-space M2n+1(ϕ, ξ, η, g). If M is a 2-pseudoparallel submani-
fold, then M is either totally geodesic or the functions α, κ, µ, ν and L2 satisfy
L2 = κ∓

√
(κ+ α2)(ν2 − ν2) and µν(κ+ α2) = 0.

Proof. Let us suppose that M is a 2-pseudoparallel submanifold of (κ, µ, ν)-
space M2n+1(ϕ, ξ, η, g). Then, by means of (27), there exists a function L2 such
that

(R̃(X,Y ) · ∇̃σ)(U, V, Z) = L2Q(g, ∇̃σ)(U, V, Z;X,Y ),

for all vector fields X,Y, Z, U, V on M . This implies that

R⊥(X,Y )(∇Uσ)(V,Z) − (∇̃R(X,Y )Uσ)(V,Z)− (∇̃Uσ)(R(X,Y )V,Z)

− (∇̃Uσ)(V,R(X,Y )Z) = −L2{(∇̃(X∧gY )Uσ)(V,Z)

+ (∇̃Uσ)((X ∧g Y )V,Z)

+ (∇̃Uσ)(V, (X ∧g Y )Z)}.(42)

Taking X = Z = ξ in (42), we can infer

R⊥(ξ, Y )(∇̃Uσ)(V, ξ) − (∇̃R(ξ,Y )Uσ)(V, ξ)− (∇Uσ)(R(ξ, Y )V, ξ)

− (∇̃Uσ)(V,R(ξ, Y )ξ) = −L2{(∇̃(ξ∧gY )Uσ)(V, ξ)

+ (∇̃Uσ)((ξ ∧g Y )V, ξ)

+ (∇̃Uσ)(V, (ξ ∧g Y )ξ)}.(43)
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Next, we will calculate each of these statements, respectively. Taking into
account of (22), (32) and (33), we obtain

R⊥(ξ, Y )(∇̃Uσ)(V, ξ) = R⊥(ξ, Y ){∇⊥
Uσ(V, ξ)− σ(∇UV, ξ)− σ(∇Uξ, V )}

= −R⊥(ξ, Y )σ(∇Uξ, V )

= −R⊥(ξ, Y )σ(−αϕ2U − ϕhU, V )

= −αR⊥(ξ, Y )σ(U, V ) +R⊥(ξ, Y )ϕσ(hU, V ).(44)

On the other hand, from (5), (23) and (33), by a direct calculation, we can
infer

R(ξ,X)Y = κ[g(Y,X)ξ − η(Y )X] + µ[g(hY,X)ξ − η(Y )hX]

+ ν[g(X,ϕhY )ξ − η(Y )ϕhX].(45)

Therefore,

(∇̃R(ξ,Y )Uσ)(V, ξ) = ∇⊥
R(ξ,Y )Uσ(V, ξ)− σ(∇R(ξ,Y )UV, ξ)− σ(∇R(ξ,Y )Uξ, V )

= −σ(∇R(ξ,Y )Uξ, V )

= σ(αϕ2R(ξ, Y )U + ϕhR(ξ, Y )U, V )

= −ασ(R(ξ, Y )U, V ) + σ(ϕhR(ξ, Y )U, V )

= −ασ(−κη(U)Y − µη(U)hY − νη(U)ϕhY, V )

+ σ(−κη(U)ϕhY − µη(U)ϕh2Y − νη(U)ϕhϕhY, V )

= ακη(U)σ(V, Y ) + αµη(U)σ(hY, V )

+ ανη(U)σ(ϕhY, V )− κη(U)σ(ϕhY, V )

+ µ(κ+ α2)η(U)σ(ϕY, V ) + ν(κ+ α2)σ(V, Y ).(46)

Furthermore, by using (32) and (45), we have

(∇̃Uσ)(R(ξ, Y )V, ξ) = ∇⊥
Uσ(R(ξ, Y )V, ξ)− σ(∇UR(ξ, Y )V, ξ)

− σ(∇Uξ,R(ξ, Y )V )

= −σ(∇Uξ,R(ξ, Y )V ) = σ(αϕ2U + ϕhU,R(ξ, Y )V )

= ασ(ϕ2U,R(ξ, Y )V ) + σ(ϕhU,R(ξ, Y )V )

= −ασ(U,−κη(V )Y − µη(V )hY − νη(V )ϕhY )

+ σ(ϕhU,−κη(V )Y − µη(V )hY − νη(V )ϕhY )

= καη(V )σ(U, Y ) + µαη(V )σ(hY,U)

+ ανη(V )σ(U, ϕhY )− κη(V )σ(ϕhU, Y )

− µη(V )σ(ϕhU, hY ) + νη(V )σ(hU, hY )

= καη(V )σ(U, Y ) + µαη(V )σ(hY, U)

+ ανη(V )σ(U, ϕhY )− κη(V )σ(ϕhU, Y )

+ µ(κ+ α2)η(V )σ(ϕU, Y )

− ν(κ+ α2)η(V )σ(U, Y ).(47)
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The fourth term gives us

(∇Uσ)(V,R(ξ, Y )ξ)

= (∇Uσ)(V, κ[η(Y )ξ − Y ]− µhY − νϕhY ).(48)

On the other hand, by the view of (25), (32) and (33), we obtain

(∇̃(ξ∧gY )Uσ)(V, ξ) = ∇⊥
(ξ∧gY )Uσ(V, ξ)− σ(∇(ξ∧gY )UV, ξ)

− σ(V,∇(ξ∧gY )Uξ)

= σ(V, αϕ2(ξ ∧g Y )U + ϕh(ξ ∧g Y )U)

= −ασ(V, (ξ ∧g Y )U) + σ(V, (ξ ∧g Y )U)

= αη(U)σ(Y, V )− η(U)σ(ϕhY, V ),(49)

and

(∇̃Uσ)((ξ ∧g Y )V, ξ) = ∇⊥
Uσ((ξ ∧g Y )V, ξ)− σ(∇U (ξ ∧g Y )V, ξ)

− σ((ξ ∧g Y )V,∇Uξ)

= σ(ααϕ2U + ϕhU, g(Y, V )ξ − η(V )Y )

= αη(V )σ(Y,U)− η(V )σ(Y, ϕhU).(50)

Finally,

(∇̃Uσ)(V, η(Y )ξ − Y ) = −(∇̃Uσ)(V, Y ) + (∇̃Uσ)(V, η(Y )ξ)

= −(∇̃Uσ)(V, Y ) +∇⊥
Uσ(V, η(Y )ξ)

− σ(∇UV, η(Y )ξ)− σ(V,∇Uη(Y )ξ)

= −(∇̃Uσ)(V, Y )− σ(V,U [η(Y )]ξ + η(Y )∇Uξ)

= −(∇̃Uσ)(V, Y ) + η(V )σ(αϕ2U + ϕhU, V )

= −(∇̃Uσ)(V, Y )− αη(Y )σ(U, V )

+ η(Y )σ(ϕhU, V ).(51)

Substituting (44), (46), (47),(48), (49), (50) and (51) into (43), we reach at

− αR⊥(ξ, Y )σ(U, V ) +R⊥(ξ, Y )ϕσ(U, V )− καη(U)σ(V, Y )

− µαη(U)σ(V, hY )− ναη(U)σ(V, ϕhY ) + κη(U)σ(V, ϕhY )

− µ(κ+ α2)η(U)σ(ϕY, V )− ν(κ+ α2)η(U)σ(V, Y )− καη(V )σ(U, Y )

− αµη(V )σ(hY, U)− ανη(V )σ(U, ϕhY ) + κη(V )σ(ϕhU, Y )

− µ(κ+ α2)η(V )σ(ϕU, Y ) + ν(κ+ α2)η(V )σ(U, Y )

− (∇Uσ)(V, κ[η(Y )ξ − Y ]− µhY − νϕhY ) = −L2{αη(U)σ(V, Y )

− η(U)σ(ϕhY, V ) + αη(V )σ(Y, U)− η(V )σ(Y, ϕhU)

− (∇Uσ)(V, Y )− αη(Y )σ(U, V ) + η(Y )σ(ϕhU, V )}.
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Here, taking V = ξ in the last equality and using (33), we conclude that

L2{ασ(U, Y ) − σ(Y, ϕhU)− (∇̃Uσ)(Y, ξ)} = κασ(U, Y ) + αµσ(U, hY )

+ ανσ(U, ϕhY )− κασ(ϕhY,U) + µ(κ+ α2)σ(ϕU, Y )

− ν(κ+ α2)σ(U, Y )

+ (∇̃Uσ)(ξ, κ[η(Y )ξ − Y ]− µhY − νϕhY ),(52)

where

(∇̃Uσ)(Y, ξ) = −σ(∇Uξ, Y ) = σ(αϕ2U + ϕhU, Y )

= −ασ(U, Y ) + ϕσ(hU, Y )(53)

and

(∇̃Uσ)(ξ, κ[η(Y )ξ − Y ]− µhY − νϕhY )

= −σ(∇Uξ, κ[η(Y )ξ − Y ]− µhY − νϕhY )

= σ(αϕ2U + ϕhU, κ[η(Y )ξ − Y ]− µhY − νϕhY )

= −ασ(U, κ[η(Y )ξ − Y ]− µhY − νϕhY )

+ σ(ϕhU, κ[η(Y )ξ − Y ]− µhY − νϕhY )

= κασ(U, Y ) + αµσ(hY, U) + ανσ(ϕhY,U)

− κσ(ϕhU, Y ) + µ(κ+ α2)σ(ϕU, Y )− ν(κ+ α2)σ(U, Y ).(54)

Substituting (53) and (54) into (52), we get

[αL2 − κα+ ν(κ+ α2)]σ(U, Y ) + [κ− L2 − αν]ϕσ(hU, Y )

− µ(κ+ α2)ϕσ(U, Y )− αµσ(hU, Y ) = 0.(55)

If hU is written instead of U in (55) and using (6), (9) and (33), we have

[αL2 − κα + ν(κ+ α2)]σ(hU, Y )− (κ+ α2)[κ− L2 − αν]ϕσ(U, Y )

− µ(κ+ α2)ϕσ(hU, Y ) + αµ(κ+ α2)σ(U, Y ) = 0.(56)

From (55) and (56), for κ ̸= 0, we obtain

[(L2 − κ)2 − (κ+ α2)(ν2 − µ2)]σ(U, Y ) + 2µν(κ+ α2)ϕσ(U, Y ) = 0.

Since the vectors ϕσ(U, Y ) and σ(U, Y ) are orthogonal, we conclude that M is
a totally geodesic or

µν(κ+ α2) = 0,

and

L2 = κ∓
√
(κ+ α2)(ν2 − ν2).

Thus, the proof is completed.

From Theorem 2.5, we have the following corollary.

Corollary 2.6. Let M be an invariant submanifold of an almost α- cosym-
plectic (κ, µ, ν)-space M2n+1(ϕ, ξ, η, g). Then, M is 2-semiparallel if and only
if M is totally geodesic.
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Theorem 2.7. Let M be an invariant Ricci-generalized pseudoparallel sub-
manifold of an almost α-cosymplectic (κ, µ, ν)-space M2n+1(ϕ, ξ, η, g). Then,
M is either totally geodesic submanifold or the functions L3, κ, µ, ν and α
satisfy the condition

L3 =
1

2n

(
1∓ 1

κ

√
(κ+ α2)(ν2 − µ2

)
, µν(κ+ α2) = 0.

Proof. We suppose that M is an invariant Ricci-generalized pseudoparallel.
Then there exists a function L3 on M such that

(R̃(X,Y ) · σ)(U, V ) = L3Q(S, σ)(U, V ;X,Y ),

for all vector fields X,Y, U, V on M . This implies that

R⊥(X,Y )σ(U, V ) − σ(R(X,Y )U, V )− σ(U,R(X,Y )V )

= −L3{σ((X ∧S Y )U, V ) + σ(U, (X ∧S Y )V )}
= −L3{σ(X,V )S(U, Y )− σ(Y, V )S(X,U)

+ σ(U,X)S(Y, V )− σ(U, Y )S(X,V )}.(57)

By a direct calculation, we obtain

S(X, ξ) = 2nκη(X).(58)

Taking U = ξ in (57) and by view means of (5), (33) and (58), we have

σ(R(X,Y )ξ, V ) = 2nκL2{σ(X,V )− σ(Y, V )},

that is,

2nκL2{σ(X,V )− σ(Y, V )} = σ(κ[η(Y )X − η(X)Y ] + µ[η(Y )hX

− η(X)hY ] + ν[η(Y )ϕhX − η(X)ϕhY ], V ).

This yields to

κ(2nL3 − 1)σ(X,V ) = µσ(hX, V ) + νϕσ(hX, V ).(59)

If hX is written instead of X and using (6) and (33), we get

κ(2nL3 − 1)σ(hX, V ) = −(κ+ α2){µσ(X,V )− νϕσ(X,V )}.(60)

From (59) and (60), we can derive

{κ2(2nL3 − 1)2 + (κ+ α2)(µ2 − ν2)}σ(X,V )

= −2µν(κ+ α2)ϕσ(X,V ).

Since σ and ϕσ are orthogonal vectors, it follows that

κ2(2nL3 − 1)2 + (κ+ α2)(µ2 − ν2) = 0, µν(κ+ α2) = 0,

which proves our assertions.
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Theorem 2.8. Let M be an invariant 2-Ricci-generalized pseudoparal-
lel submanifold of an almost α-cosymplectic (κ, µ, ν)-space M2n+1(ϕ, ξ, η, g).
Then, M is either totally geodesic submanifold or the function L4 satisfies

L4 =
1

2n

(
1∓ 1

κ

√
(κ+ α2)(ν2 − µ2

)
and µν(κ+ α2) = 0.

Proof. Given M is an invariant 2-Ricci-generalized pseudoparallel subman-
ifold, we have

(R̃(X,Y ) · ∇̃σ)(U, V,W ) = L4Q(S, ∇̃σ)(U, V,W ;X,Y )

for all vector fields X,Y, U, V,W on M . That means

R⊥(X,Y )(∇̃Uσ)(V,W ) − (∇̃R(X,Y )Uσ)(V,W )− (∇̃Uσ)(R(X,Y )V,W )

− (∇̃Uσ)(V,R(X,Y )W ) = −L4{(∇̃(X∧SY )Uσ)(V,W )

+ (∇̃Uσ)((X ∧S Y )V,W )

+ (∇̃Uσ)(V, (X ∧S Y )W )}.(61)

Taking X = V = ξ in (61), we obtain

R⊥(ξ, Y )(∇̃Uσ)(ξ,W ) − (∇̃R(ξ,Y )Uσ)(ξ,W )− (∇̃Uσ)(R(ξ, Y )ξ,W )

− (∇̃Uσ)(ξ,R(ξ, Y )W ) = −L4{(∇̃(ξ∧SY )Uσ)(ξ,W )

+ (∇̃Uσ)(ξ ∧S Y )ξ,W )

+ (∇̃Uσ)(ξ, (ξ ∧S Y )W )}.(62)

Now, let us calculate each of these terms separately. First,

R⊥(ξ, Y ){−σ(∇Uξ,W )} = R⊥(ξ, Y )σ(αϕ2U + ϕhU,W )

= −αR⊥(ξ, Y )σ(U,W )

+ R⊥(ξ, Y )σ(ϕhU,W ).(63)

Making use of (6), (32) and (45), we can calculate the second term as

(∇̃R(ξ,Y )Uσ)(W, ξ) = −σ(∇R(ξ,Y )Uξ,W ) = ασ(ϕ2R(ξ, Y )U,W )

+ σ(ϕh∇R(ξ,Y )U ,W )

= ακη(U)σ(Y,W ) + αµη(U)σ(hY,W )

+ ανη(U)σ(ϕhY,W )

− κη(U)σ(ϕhY,W ) + µ(κ+ α2)η(U)σ(ϕY,W )

− νη(U)σ(ϕhϕhY,W )

= ακη(U)σ(Y,W ) + αµη(U)σ(hY,W )

+ ανη(U)σ(ϕhY,W )

− κη(U)σ(ϕhY,W ) + µη(U)(κ+ α2)σ(ϕY,W )

− ν(κ+ α2)η(U)σ(Y,W ),(64)
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In view of (9) and (22), we observe

(∇̃Uσ)(R(ξ, Y )ξ,W )

= (∇̃Uσ)(κ[η(Y )ξ − Y ]− µhY − νϕhY,W ).(65)

In the same way,

(∇̃Uσ)(R(ξ, Y )W, ξ) = −σ(∇Uξ,R(ξ, Y )W ) = σ(αϕ2U + ϕhU,R(ξ, Y )W )

= ακη(W )σ(U, Y ) + αµη(W )σ(hY,W )

+ ανη(W )σ(U, ϕhY )− κη(W )σ(ϕhU, Y )

− µη(W )σ(ϕh2U, Y ) + νη(W )σ(h2U, Y )

= ακη(W )σ(U, Y ) + αµη(W )σ(hY,W )

+ ανη(W )σ(U, ϕhY )− κη(W )σ(ϕhU, Y )

+ µ(κ+ α2)η(W )σ(ϕU, Y )

+ ν(κ+ α2)η(W )σ(U, Y ),(66)

(∇̃(ξ∧SY )Uσ)(ξ,W ) = −σ(∇(ξ∧SY )Uξ,W )

= σ(αϕ2(ξ ∧S Y )U + ϕh(ξ ∧S Y )U,W )

= −ασ(S(Y,U)ξ − S(ξ, U)Y,W )

+ σ(ϕh[S(Y,U)ξ − S(ξ, U)Y ],W )

= 2nκη(U){ασ(Y,W )− σ(ϕhY,W )},(67)

(∇̃Uσ)((ξ ∧S Y )ξ,W ) = −σ(∇U (ξ ∧S Y )ξ,W )

= (∇̃Uσ)(S(ξ, Y )ξ − S(ξ, ξ)Y,W )

= 2n{(∇Uσ)(κη(Y )ξ,W )− (∇Uσ)(κY,W )}
= 2n{−σ(U [κη(Y )]ξ + κη(Y )∇Uξ,W )

− (∇Uσ)(κY,W )}
= 2n{−καη(Y )σ(U,W ) + κη(Y )σ(ϕhU,W )

− (∇Uσ)(κY,W )}.(68)

Finally,

(∇̃Uσ)(ξ, (ξ ∧S Y )W ) = −σ(∇Uξ, (ξ ∧S Y )W )

= σ(αϕ2U + ϕhU, S(Y,W )ξ − S(ξ,W )Y )

= 2nκαη(W )σ(U, Y )

− 2nκη(W )σ(ϕhU, Y ).(69)
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Consequently, substituting (63), (64), (65), (66), (67), (68) and (69) into (62),
we reach at

− αR⊥(ξ, Y )σ(U,W ) +R⊥(ξ, Y )σ(ϕhU,W )− ακη(U)σ(Y,W )

− αµη(U)σ(hY,W )− ανη(U)σ(ϕhY,W ) + κη(U)σ(ϕhY,W )

− µη(U)(κ+ α2)σ(ϕY,W ) + ν(κ+ α2)η(U)σ(Y,W )

− (∇Uσ)(κ[η(Y )ξ − Y ]− µhY − νϕhY,W )− ακη(W )σ(U, Y )

− αµη(W )σ(hY,W )− ανη(W )σ(U, ϕhY ) + κη(W )σ(ϕhU, Y )

− µ(κ+ α2)η(W )σ(ϕU, Y ) + ν(κ+ α2)η(W )σ(U, Y )

= −L4{2nκαη(U)σ(Y,W )− 2nκη(U)σ(ϕhY,W )− 2nκαη(Y )σ(U,W )

+ 2nκη(Y )σ(ϕhU,W )− 2n(∇Uσ)(κY,W ) + 2nακη(W )σ(U, Y )

− 2nκη(W )σ(ϕhU, Y )}.
In the last equality, putting W = ξ, we have

2nL4{(∇Uσ)(κY, ξ) − κασ(U, Y ) + κσ(ϕhU, Y )} = ν(κ+ α2)σ(U, Y )

− ακσ(U, Y )− αµσ(hY, U)− ανσ(ϕhU, Y )

− µ(κ+ α2)σ(ϕU, Y ) + κσ(ϕhU, Y )

− (∇Uσ)(κ[η(Y )ξ − Y ]− µhY − νϕhY, ξ),(70)

where

(∇Uσ)(κY, ξ) = −σ(∇Uξ, κY ) = σ(αϕ2U + ϕhU, κY )

= −ακσ(U, Y ) + κσ(ϕhU, Y ),(71)

and

(∇Uσ)(κ[η(Y )ξ − Y ]− µhY − νϕhY, ξ)

= −σ(∇Uξ, κ[η(Y )ξ − Y ]− µhY − νϕhY )

= σ(αϕ2U + ϕhU, κ[η(Y )ξ − Y ]− µhY − νϕhY )

= ακσ(U, Y ) + αµσ(U, hY ) + ανσ(U, ϕhY )

− κσ(ϕhU, Y ) + µ(κ+ α2)σ(ϕU, Y )− ν(κ+ α2)σ(U, Y ).(72)

(71) and (72) are put in (70), we conclude that

[κα(2nL4 − 1) + (κ+ α2)(ν − µϕ)]σ(U, Y )

− [κ(2nL4 − 1)ϕ+ α(νϕ+ µ)]σ(hU, Y ) = 0.(73)

Here hU is written instead of U and taking into account of (6) and (33), we
have

[κα(2nL4 − 1) + (κ+ α2)(ν − µϕ)]σ(hU, Y )

+ [κ(2nL4 − 1)ϕ+ α(νϕ+ µ)](κ+ α2)σ(U, Y ) = 0.(74)

From (73) and (74), it follows for κ ̸= 0,

[κ2(2nL4 − 1)2 + (µ2 − ν2)(κ+ α2)]σ(U, V ) + 2µν(κ+ α2)ϕσ(U, V ) = 0.
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This proves our assertion.
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