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INVARIANT PSEUDOPARALLEL SUBMANIFOLDS OF AN
ALMOST a-COSYMPLECTIC (k, s, v)-SPACE

MEHMET ATGEKEN AND GULSUM YUca*

Abstract. In this article, we research the conditions for invariant sub-
manifolds in an almost a-cosymplectic (k, i, ) space to be pseudo-parallel,
Ricci-generalized pseudo-parallel and 2-Ricci-generalized pseudo-parallel.
We think that the results for the relations among the functions will con-
tribute to differential geometry.

1. Introduction

An almost contact manifold is an odd-dimensional manifold M2"+! which
carries a field ¢ of endomorphism of the tangent space, a vector field &, called
characteristic, and a 1-form 7 satisfying

where I denotes the identity mapping of tangent space at each point of M.
From (1), it follows

(2) =0, noed =0 rank(¢) = 2n.
An almost contact manifold M2"+1(¢, ¢, n) is said to be normal if the tensor

field N = [¢, 9] + 2dn ® £ = 0, where [¢, ¢] denote the Nijenhuis tensor field

of ¢. It is well known that any almost contact manifold M ntl(g,€,m) has a
Riemannian metric such that

3) 9(¢X,9Y) = g(X,Y) = n(X)n(Y),

for any vector fields X,Y on M [3]. Such metric g is called compatible metric
and the manifold A72"+1 together with the structure (¢,7,&,g) is called an
almost contact metric manifold and is denoted by M2"+1(¢,n7§,g). The 2-
form ® of M%“(gb, 1,&,g) is defined as ®(X,Y) = g(¢X,Y), and is called the
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fundamental form of M2"+1(¢, 7, €, g). If the Nijenhuis tensor vanishes, defined
by

Ny(X,Y) = [¢X, 0Y] = ¢[0X, Y] = 01X, Y] — ¢*[X, Y] + 2d(X, Y )¢,

then M2"+1(¢,77,§,g) is said to be normal. It is obvious that a normal al-
most Kenmotsu is said to be Kenmotsu manifold. On the other hand, an al-
most contact metric manifold is known as Kenmotsu if and only if (Vx¢)Y =
9(6X, V)¢ — n(Y)pX. An almost contact metric structure is cosymplectic if
and only if 67] and V& are closed.

In the light of the above definitions, the generalization of almost Kenmotsu
manifold, M2"+1(¢,n, &, g) is called almost a-Kenmotsu manifold if dy = 0 and
d® = 2an A @, where « is a nonzero real constant[4].

As a generalization of these, a new notation has been introduced of an al-
most a-cosymplectic manifold which is defined dnp = 0 and d® = 2an A ¢ for
a real number «. A normal almost a-cosymplectic manifold is said to be a-
cosymplectic manifold, and it is either cosymplectic or c-Kenmotsu under the
condition a = 0 or a # 0, respectively[6, 12].

It should be noted that almost a-cosymplectic manifolds are generalizations
of almost a-Kenmotsu and almost cosymplectic manifolds.

It is well known that on a contact metric manifold MZ"H((b,{,n,g), the
tensor h, defined by 2h = L¢¢, the following equalities are satisfied;

(4) Vx&=—¢X — ¢hX, hd+dh=0, trh=tréh=0,hé =0,

where V is the Levi-Civita connection on M2+ [4].

In [10], the authors studied the almost a-cosymplectic (k, u, v)-spaces under
different conditions and gave an example in dimension 3.

Going beyond generalized (x, u)-spaces, in [8], the notion of (k, p, v)-contact
metric manifold was introduced as follows[10];

(5)  R(X,Y)E=n(Y)[s] + ph+voh]X —n(X)[k] + ph + vohlY,
for some smooth functions &,y and v on M2+ where R denotes the Rie-
mannian curvature tensor of M?"*! and X,Y are vector fields on M2 +1,

They proved that this type of manifold is intrinsically related to the har-
monicity of the Reeb vector on contact metric 3-manifolds. Some authors have
studied manifolds satisfying condition (5) but a non-contact metric structure.
In this connection, P. Dacko and Z. Olszak defined an almost cosymplectic
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(k, p, v)-space as an almost cosymplectic manifold that satisfies (5), but with
k, i and v functions varying exclusively in the direction of ¢ in[4]. Later exam-
ples have been given for this type manifold[5].

Pseudoparallel submanifolds have been studied in different structures and
working on[2, 1, 11]. In the present paper, we generalize the ambient space
and research cases of existence or non-existence of pseudoparallel submanifold
in a-cosymplectic (k, u, v)-space.

Proposition 1.1. Given M?"+1 (¢,&,m, g) an almost a-cosymplectic (k, p, v)-
space, then

(6) W= (k+a’)d,
REX)Y = k[g(X,Y)E—n(YV)X] + plg(hX,Y)E - n(Y)hX]
(7) + V[g(phX,Y)E — n(Y)phX]
®) (Vx®)Y = g(apX +hX,Y)E—n(Y)(apX + hX)
(9) Vxé = —a¢’X — ¢hX,

for all vector fields X, Y on M2n+1[3].

Proof. From (5), we obtain

(10) R(X,6)¢ = —k¢*X + phX + vohX.

Taking ¢X instead of X in (10), we have

(11) R(¢X,€)E = kdX + phodX + vphoX.

Applying ¢ to (11) and after the necessary revisions are made, we reach at
(12) PR($X, )€ = kX + phX + vohX.

(10) and (12) give us

(13) R(X,€)¢ — pR(pX, )€ = —2r¢*X.

On the other hand, from ([13]) we know that
R(X.0¢ = o®[1(X)§ — X] + aghX + (Veoh) X — (Vxoh)é

(14) = a?¢’X 4 200hX + phX — h2X.
This implies that
R(¢X, )¢ = —a¢X +2ahX + pudphdX + vhX — h2¢X.
Applying ¢ to the last equality, one can easily see
(15)  GR(¢X,6)E = —a?¢*X + 2aphX + phX + vohX + h*X.

From (14) and (15), we verify
(16) R(X,&)€ — pR(pX, €)¢ = 2[a*¢* — h?|X.
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(13) and (18) give us (6).
Also, from (5), we have

J(R(X,Y)E,Z) = rgn(Y)X —n(X)Y, Z) + pg(n(Y)hX —n(X)hY, Z)
+ vg(n(Y)ohX —n(X)ehY,Z),

for all X|Y,Z € F(T]Téf). By using the properties of R and ¢ o h+ ho ¢ = 0,
we conclude that

g(R(&2)X,Y) = sn(Y)g(X,2) — sn(X)g(Y, Z) + pn(Y)g(hX, Z)
(17) = un(X)g(Y,hZ) +vn(Y)g(ohX, Z) — vn(X)g(Y, ¢hZ).
Here, one can easily see
R Z2)X = klg(X,2)¢ —n(X)Z] + plg(hX, Z)§ — n(X)hZ]

+ vlg(¢hX, Z)¢ — n(X)phZ].
This completes the proof of (7).
Almost a-cosymplectic manifolds are special classes of almost a-cosymplectic
f-manifolds, for the proof of (8), one can see [10]. So we do not need to give

the proof here.

Taking Y = £ in (8), we observe

(18) (Vx$)é = —9Vxé = —adX — hX.
Applying ¢ to (18) and after the necessary revisions are made, we can verify
(9). Thus, the proof is completed. O

Now, let M be an immersed submanifold of an almost a-cosymplectic (k, p, v/)-
space M2+l By I'(TM) and T'(T+M), we denote the tangent and normal

subspaces of M in M. Then, the Gauss and Weingarten formulae are, respec-
tively, given by

(19) VxY = VxY +0(X,Y),
and
(20) VxV =—-AyX + V%V,

for all X,Y € I'(TM) and V € T(T+M), where V and V* are the induced
connections on M and I'(T+M) and ¢ and A are called the second funda-
mental form and shape operator of M, respectively, I'(T'M) denote the set
differentiable vector fields on M. They are related by

The covariant derivative of ¢ is defined by

(22)  (Vx0)(Y,2) =Vxo(Y,Z) — o(VxY,Z) — o(Y,VxZ),
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forall X|Y,Z e (TM). If Vo = 0, then the submanifold is called its second
fundamental form parallel.

By R, we denote the Riemannian curvature tensor of the submanifold M,
we have the following Gauss equation

R(X,Y)Z = R(X,Y)Z+ Ayx.2)Y — Agy.)X + (Vxo)(Y, Z)
(23) — (Vyo)(X.2),
for all X,Y,Z e T(TM).
For a (0, k)-type tensor field T, k > 1 and a (0, 2)-type tensor field A on a
Riemannian manifold (M, g), Q(A, T)-tensor field is defined by

QA T) (X1, X2, ., Xi; X,Y) = —T((X Ax Y)X1, Xo, ooy Xi)...

(24) — T(X1,Xo,..Xp_1,(X AaY)Xg),
for all X1, Xo,..., Xy, X, Y € I(TM)[9], where
(25) (X AaY)Z = A(Y, 2)X — A(X, Z)Y.

Definition 1.2. A submanifold of a Riemannian manifold (M, g) is said
to be pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel and 2-
Ricci-generalized pseudoparallel if

R-o and Q(g,0)
R-Vo and Q(g,Vo)
R-o and Q(S,0)
R-Vo and Q(S,Vo)

are linearly dependent, respectively[11].

Equivalently, these cases can be explained by the following way;

(26) R-oc = Li1Q(g,0),
(27) R-Vo = LyQ(g,Vo),
(28) R0 = L3Q(S,0),
(29) R-Vo = LQ(S,Vo),

where the functions Ly, Lo, L3 and L4 are, respectively, defined on

My ={z€M:0(z)#g(x)}, Mo ={z € M : Vo(z) # g(x)}, M3 ={x € M :
S(z) # o(x)} and My = {& € M : S(x) # Vo(z)} and S denotes the Ricci
tensor of M.

Particularly, if L; = O(resp. Ls = 0), the submanifold is said to be semi-
parallel(resp. 2-semiparallel)[1].



Invariant pseudoparallel submanifolds 527

2. Invariant Submanifolds of an almost «-cosymplectic (k,p,v)
Space

Now, let M2"+1(¢, £, 7, ) be an almost a-cosymplectic (k, g, v)-space and
M an immersed submanifold of AM/2"+1, If o(T,M) C T, M, for each point
x € M, then M is said to be an invariant submanifold of M2"1(¢, &, 1, g)
with respect to ¢. Hence, we will easily see that an invariant submanifold with
respect to ¢ is also invariant with respect to h.

Proposition 2.1. Let M be an invariant submanifold of an almost «-
cosymplectic (k, u, v)-space M?"+1(¢p, &, n, g) such that & tangent to M. Then,
the following equalities hold on M;

RX,Y)E = wn(Y)X =n(X)Y]+ p[n(Y)hX —n(X)hY]

(30) + v(Y)phX —n(X)phY]

(31) (Vx@)Y = g(adpX +hX,Y)E—n(Y)(adX + hX)
(32) Vxé = —ad’X —phX

(33) po(X,Y) = 0(¢X,Y)=0(X,9Y), o(X,§) =0,

where V, 0 and R denote the induced Levi-Civita connection, the shape oper-
ator and Riemannian curvature tensor of M, respectively.
Proof. Since M is an invariant submanifold, from (9) and (19), we have
o(X,£) =0, and Ay& =0,

for all X € T(TM) and V € T'(T+M). Also by using (23), we obtain (30).
On the other hand, tangent and normal components of expanding

(Vx@)Y = VxV —¢VxY
VxoY +0(X,6Y) — ¢VxY — ¢o(X,Y)
= (Vx9)Y +0(X,9Y) — ¢o(X,Y)
give us to (31) and (33), respectively.
Finally, the Gauss formulae and (9), we have
Vx€=Vx€+0(6X) = —a¢’X — hX,

for all X € I'(T'M). Also tangent components of this give (32).
Furthermore, by using (7), (23) and the last term of (33), we get (30). O

In the rest of this paper, we will assume that M is an invariant submanifold
of an a-cosymplectic (k, u,v)-space M?"T1(¢,£,m,9). In this case, from (4),
we have

(34) ohX = —hoX,
forall X € T'(T'M), that is, M is also invariant with respect to the tensor field h.
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We need the following theorem to guarantee for the second fundamental
form o is not always identically zero.

Theorem 2.2. Let M be an invariant submanifold of an almost a-cosymplectic
(k, i, v)-space M?"*1(¢p € n,g). Then, the second fundamental form o of M
is parallel M is totally geodesic provided rk # 0.

Proof. Let us suppose that o is parallel. From (22), we have

(35) (Vxo)(Y,Z) = Vko(Y,Z) — o(VxY,Z) — o(Y,VxZ) =0,

for all vector fields X,Y and Z on M?"*1. Setting Z = £ in (35) and taking

into account (32) and (33), we have

o(Vx€,Y) = —0(ap’X + ¢hX,Y) = 0,

that is,

(36) —ao(X,Y)+ ¢o(hX,Y) =0.

Writing hX of X in (36) and by using (6) and (33), we obtain

—ac(hX,Y) + ¢o(h*X,Y) =0,

(37) aoc(hX,Y) + (o +k)po(X,Y)=0.

From (36) and (37), we conclude that ko (X,Y") = 0, which proves our assertion.
O

Theorem 2.3. Let M be an invariant pseudoparallel submanifold of an al-
most o cosymplectic (k, p, v)-space M?"+1(¢, &, m,g). Then, M is either totally
geodesic submanifold or the function L satisfies L1 = k¥ /(2 — p2)(k + a2),
uv(k +a?) = 0.

Proof. We suppose that M is an invariant pseudoparallel submanifold of an
almost a-cosymplectic M2"+1(¢, €, n, g)-space. Then, there exists a function
L1 on M such that

(R(X,Y) - 0)(U,V) = LiQlg, 0)(U, V; X, V),

for all vector fields X,Y, U,V on M. By means of (24) and (26), we have
RYX,Y)o(U V) — o(R(X,Y)U,V)—-0o(UR(X,Y)V)

(38) = —Li{oc((X A Y)U,V)+ 00U, (XN Y)V)}

Here taking Y = U = ¢ in (38) and taking into account of Proposition 2.1, we
obtain

RJ_ (Xv 5)0—(51 V) - U(R(Xa 5)57 V) - 0—(57 R(Xv f)V)
= —Li{o((X Ay §)E, V) +a(& (X AgEV)}
= —Li{o(X —n(X)§, V) +a(&n(V)X —g(X,V)§)},
that is,
(39) o(R(X,6)E,V) = Lo (X, V).
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By means of Proposition 2.1 and (5), we conclude that
(40) (L1 —r)o(X,V) = po(hX,V) +vo(phX,V).
If hX is substituted for X at (40) and making use of (6) and (33), we obtain
(41) (L —r)o(hX,V) = —(k+ o) [uo(X,V) +voo(X,V)].
From (40) and (41), we reach at

(L1 = K)* + (5 + @) (u® = v)]o(X, V) = =2uv(k + o®)¢o (X, V).
This yields to

(L1 —k)?*+ (k+ ) (p? —v?) =0, pr(k+a®)=0 or o =0.

This completes the proof. O
From the Theorem 2.3, we have the following corollary.

Corollary 2.4. Let M be an invariant submanifold of an almost a- cosym-
plectic (k, u,v)-space M?"T1(¢,£,m,9). Then, M is semiparallel if and only if
M is totally geodesic.

Theorem 2.5. Let M be an invariant submanifold of an almost a- cosym-
plectic (k, u,v)-space M?"*1(¢,€,m,g). If M is a 2-pseudoparallel submani-
fold, then M is either totally geodesic or the functions a, k, ut, v and Lo satisfy
Ly=rkF(k+a2)(v? —12) and pv(k+a?)=0.

Proof. Let us suppose that M is a 2-pseudoparallel submanifold of (k, i, v)-
space M?"T1(¢$,&,n, g). Then, by means of (27), there exists a function Ly such
that

(R(X,Y) - Vo)(U.V.Z) = LsQ(9,Vo)(U,V, Z; X,Y),
for all vector fields X,Y, Z, U,V on M. This implies that
RYX,Y)(Vuo)(V,2) — (Vaxywo)V,2) = (Vuo)(R(X,Y)V, Z)
Vuo)(V,R(X,Y)Z) = —LoA(Vxn,vyvo)(V; Z)

(
(Vuo)(X Ay YV, Z)
(

Vuo)(V, (X Ay Y)Z)}.
Taking X = Z = £ in (42), we can infer
RHEY)(Vuo)(V,€) = (Vreywo)(V,€) — (Vo) (R(EY)V,E)
—  (Vuo)(V,R(&,Y)E) = —La{(Vien,vyuo) (V,€)
(
(

_|_
(42) +

Vuo)(§Ag YV, E)

Vuo)(V,(§ A Y)E)}

=
N
+ o+
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Next, we will calculate each of these statements, respectively. Taking into
account of (22), (32) and (33), we obtain

RYEY)(Vuo)(V,€) = RHEY{Vio(V,€) - o(VuV,€) - o(Vu, V)}
= —R(&Y)o(VuE, V)
= —RY¢Y)o(—agp?U — ¢hU, V)

(44) = —aR*(&,Y)o(U,V)+ RYE,Y)bo(hU,V).

On the other hand, from (5), (23) and (33), by a direct calculation, we can
infer

R X)Y = &[g(Y,X)§ —n(Y)X] + plg(hY, X)§ —n(Y)hX]
(45) +  v[g(X,phY)E — n(Y)phX].

Therefore,

(%R(E,Y)UU)(Vy £)

Vieywo (Vo) —o(VeeyyoVi€) — o(Vreywé, V)
= —0(VreyywéV)
o(ad*R(E,Y)U + ¢hR(E,Y)U, V)
—ac(R(E,Y)U,V) + o(ohR(€,Y)U, V)
—ao(=&nU)Y — un(U)hY —vn(U)ohY,V)
o(—kn(U)GhY — un(U)@h%Y — vn(U)phghY, V')
arn(U)o(V,Y) + apn(U)o(hY, V)
arn(U)o($hY, V) — kn(U)o(6hY, V)
(s + a2n(U)a(6Y, V) + vl(s + a2)o(V, V).
Furthermore, by using (32) and (45), we have

(Voo)(REY)V,E) = Vio(REY)V,€) —o(VuR(EY)V,E)
o(Vu& R(E,Y)V)
—a(Vué, R(E,Y)V) = a(ap?U + ¢hU, R(§,Y)V)
ac(¢*U, R(&,Y)V) + a(¢hU, R(E,Y)V)
—ao(U, —kn(V)Y — un(V)hY —vn(V)phY)
o(¢hU, —kn(V)Y — un(V)RY — vn(V)$hY)
kan(V)o(U,Y) + pan(V)o(hY,U)
avn(V)o (U, phY) — kn(V)o(phU,Y)
un(V)o(ohU, hY) + vn(V)o(hU, hY)
kan(V)o(U,Y) + pan(V)o(RY,U)
awvn(V)o(U,¢hY) — kn(V)o(¢hU,Y)

1 “n(V)o(oU,Y)
v( n(V)e(U,Y).

+ 1+

(46)

+

(I L i ||

+ 4+

)o
K+«
K+«

—
W~
-3

N—

|
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The fourth term gives us

(Vuo)(V, R(E, Y)E)
(48) —  (Vuo)(Vik[n(Y)E — Y] — phY — vghY).

On the other hand, by the view of (25), (32) and (33), we obtain

(6(5/\9Y)UO')(‘/5 §) = VéAgY)UU(V §) —o(Ven,vivVs§)
— o(V;Vien,vvé)
= o(V,a9’(¢ Ng YU + oh(§ N Y)U)
—ao(V, (A Y)U) +a(V, (N Y)U)
(49) = an(U)o(Y,V) —nU)o(ohY,V),

and

(Vuo)(EAgYIV,E) = VEa((EAg YIV,E) — o(Vu(ENg Y)V,E)
— o((EAg Y)V,Vis€)
= o(aagU + ohU,g(Y,V)E —n(V)Y)

(50) = an(V)o(Y,U) — n(V)o(Y, $hU).
Finally,
(Vuo)(V,n(Y)E=Y) = —(Vyo)(V,Y)+ (Vo) (V,n(Y)E)

= —(Voo)(V,Y) + Via(V,n(Y)E)
- o(VuVn(Y)§) — a(V, Vun(Y)E)
= —(Vuo)(V.Y) = o(V,UR(Y) +n(Y)Vi€)
= —(Vuo)(V.Y) +5(V)o(ap?U + ¢hU, V)
= —(Vuo)(V,Y) —an(Y)o(U,V)

(51) n(Y)o(ohU, V).

Substituting (44), (46), (47),(48), (49), (50) and (51) into (43), we reach at

— aRNEY)o(U, V) + RE(E,Y)go(U, V) — kan(U)o(V,Y)

— pan(U)a(V,hY) = van(U)a(V, ohY) + kn(U)a(V, $hY)

— p(k+PU)a(gY, V) — v(k + o )n(U)o(V,Y) — kan(V)o(U,Y)
— aun(V)a(hY,U) — avn(V)o (U, ohY ) + kn(V)o (¢hU,Y)

— p(k+Pn(V)o(¢U,Y) + v(k+ o®)n(V)o(U,Y)

— (Vuo)(V,kn(Y)E = Y] — puhY — vohY) = —La{an(U)o(V,Y)

— (U)o (¢hY, V) + an(V)a(Y,U) — n(V)o (Y, phU)

- (Vuo)(V,Y) —an(Y)o (U, V) +n(Y)o(6hU,V)}.

531
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Here, taking V' = ¢ in the last equality and using (33), we conclude that
Lofac(U,Y) — o(Y,phU) — (6(}0)(Y7 &)} =krao(U,Y) + apo(U,hY)
+  avo(U,¢hY) — kao(phY,U) + u(k + o*)o(oU,Y)
— v(k+a?)o(U,Y)

(52) + (Vuo) (& kn(Y)E = Y] — puhY — vhY),
where

(Vuo)(Y,€) = —a(Vu&,Y) = o(ag®U + ¢hU,Y)
(53) = —ao(U,Y) + ¢o(hU,Y)
and

(Vuo)(& kn(Y)E = Y] — phY — vohY)
— (Vb Kln(Y)E — Y] — Y — vhY)
o(ap®U + ohU, k[n(Y)E = Y] — phY — vohY)
= —ac(U,sn(Y) —-Y]—phY —vohY)
o(OhU, Kn(Y )€ — Y] — uhY — vohY)
kao(U,Y) 4+ apo(hY,U) + avo(¢hY,U)
(54) —  ko(QhU,Y) + p(k + o*)o(oU,Y) — v(k + a?)o(U,Y).
Substituting (53) and (54) into (52), we get
[aLy — ko + v(k 4+ o®)]o(U,Y) + [k — Ly — avl¢o(hU,Y)
(55) — u(k+a)o(U,Y) — auo(hU,Y) = 0.
If hU is written instead of U in (55) and using (6), (9) and (33), we have
[aLy —ka + v(k+a)]o(hU,Y) — (k+a®)[k — Ly — av]éo(U,Y)
(56) — (s +a®)go(hU,Y) + ap(k + a?)o(U,Y) = 0.
From (55) and (56), for k # 0, we obtain
[(Ly — k)? — (k+®)(V? — 1®)]|o(U,Y) + 2uv(k + a*)¢o(U,Y) = 0.

+

Since the vectors ¢o(U,Y) and o(U,Y") are orthogonal, we conclude that M is

a totally geodesic or
pv(r +a®) =0,

and

Ly =k F/(k+a2)(v? —12).
Thus, the proof is completed.

From Theorem 2.5, we have the following corollary.

Corollary 2.6. Let M be an invariant submanifold of an almost a- cosym-
plectic (k, i, v)-space M*" (¢, &, n,g). Then, M is 2-semiparallel if and only

if M is totally geodesic.
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Theorem 2.7. Let M be an invariant Ricci-generalized pseudoparallel sub-
manifold of an almost a-cosymplectic (k, ju,v)-space M?"+1(¢,€,m,g). Then,
M is either totally geodesic submanifold or the functions L3, k,u,v and
satisfy the condition

1 1
- — = V(12 — 12 2y _
Ls ™ (IZFK\/(H+O()(V u), pv(k +a”) =0.

Proof. We suppose that M is an invariant Ricci-generalized pseudoparallel.
Then there exists a function L3 on M such that

(R(X.Y) - 0)(U.V) = LsQ(S,0)(U.V; X, Y),
for all vector fields X,Y, U,V on M. This implies that
RYX,Y)o(U V) — o(R(X,Y)U,V)—-0o(UR(X,Y)V)
= —Li{oc((XAs YU, V)+ 00U, (X AsY)V)}
= —L3{c(X,V)S(U,Y)—-0o(Y,V)S(X,U)
(57) + oU,X)S(Y,V)—-0o(U,Y)S(X,V)}.

By a direct calculation, we obtain
(58) S(X,¢) = 2nkn(X).
Taking U = ¢ in (57) and by view means of (5), (33) and (58), we have
o(R(X,Y),, V) =2nkLa{o(X, V) —o(Y,V)},
that is,
2nkLo{o(X, V) —o(Y,V)} = o(kn

—~

Y)X = n(X)Y]+ un(Y)hX
Y]+ v[n(Y)phX —n(X)phY], V).

3

—~
S

SN—
>

This yields to

(59) k(2nLs — 1o (X, V) = po(hX,V) + véo(hX,V).

If hX is written instead of X and using (6) and (33), we get

(60) K(2nLs — )o(hX,V) = —(k +a*){uo(X,V) —voo(X,V)}.
From (59) and (60), we can derive

{K(2nLs —1)* + (k+0®)(u? —v*)}o(X,V)
= —2uv(k+a?)go(X,V).

Since o and ¢o are orthogonal vectors, it follows that
wK2(2nLs —1)* + (k+ ) (p? —v?) =0, pv(s+a?) =0,

which proves our assertions. O
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Theorem 2.8. Let M be an invariant 2-Ricci-generalized pseudoparal-
lel submanifold of an almost a-cosymplectic (k, u,v)-space M1 (¢, €. n,g).
Then, M is either totally geodesic submanifold or the function L, satisfies

1 1
2Y(1,2 2 2y —
= o (1 T K\/(KJ—FOL )(V 7] > and /LV(I<,+ « ) 0.

Ly
Proof. Given M is an invariant 2-Ricci-generalized pseudoparallel subman-
ifold, we have
(R(X,Y) Vo)(U,V,W) = LyQ(S. Vo) (U,V,W; X,Y)

for all vector fields X, Y, U, V,W on M. That means

RY(X,Y)(Vuo)(V,W) = (Veywo)(V,W) = (Vuo)(R(X,Y)V,W)
= (Vuo)(V,R(X,Y)W) = —La{(V(xrsv)uo) (V. W)
+ (Vo) (X As Y)V, W)

(61) + (Vuo)(V,(X As Y)W)}.
Taking X =V = ¢ in (61), we obtain
RYEY) (Vo) (& W) — (Vaeywo)E W) — (Vuo)(R(EY)EW)

- (6Uo') (55 R(gv Y)W) = _L4{(6(£/\SY)UO') (E’ W)
+ (Vuo)(EAs Y)EW)

(62) + (Vuo) (& (EAs Y)W)}.
Now, let us calculate each of these terms separately. First,
RHEY){=o(Vue, W)} = R Y)o(ad™U + ¢hU, W)

= —OzRL(f,Y)U(U7 W)
(63) R(§,Y)o(¢hU, W).

Making use of (6), (32) and (45), we can calculate the second term as

(Vaeywo) W) = —o(Vaeywé W) = ac(@®R(EY)U, W)
U(¢th(§,Y)U7 W)
arn(D)o(Y,W) + aun(U)o(hY, W)

+ avn(U)o(ohY, W)

— mn(U)a(ohY, W) + p(k + a®)n(U)o (¢Y. W)

vn(U)a(phohY, W)

= arn(U)o(Y, W)+ aun(U)o(hY, W)

+ avn(U)o(phY, W)

— wn(U)o(ohY, W) + pun(U)(k + a®)o (oY, W)
(64) — v+ a)nU)a(Y, W),

+

_|_
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In view of (9) and (22), we observe

(Vuo)(R(E,Y)E, W)

(65) —  (Vuo)(kln(Y)E = Y] — uhY — vghY, W),
In the same way,

(Vuo)(R(E, Y)W, E) —o(Vué, R(EY)W) = 0(ag’U + ohU, R(§, V)W)
akn(W)o(U,Y) + aun(W)o(hY, W)

avn(W)o (U, phY') — kn(W)o(¢phU,Y)
un(W)a(6h2U, Y) + vn(W)o (h2U, )
akn(W)o(U,Y) + aun(W)o(hY, W)

avn(W)o (U, phY) — kn(W)a(¢phU,Y)

(e + a®)n(W)o(eU,Y)

v+ a2)(W)a(U, ),

I+l

+ o+ 4l

(Viersyivo) (& W) = —o(Vensviv€, W)
= o(ag*(EAs YU + ¢h(§ As YU, W)
= —ao(SY,U)§-S(EU)Y,W)
+ a(ph[S(Y,U)E = S(&,U)Y], W)
= 2nkn(U){ao(Y,W) — o(¢hY, W)},

(Vuo)(EAsY)EW) = —a(Vu(EAsY)EW)
= (Vuo)(S(&Y)E - S(E Y, W)
= 20{(Vyo)(sn(Y)E, W) — (Vyo)(kY, W)}
= 2n{—o(U[rn(Y)§ + rn(Y)Vu&, W)
— (Vyo)(kY, W)}
= 2n{—kan(Y)o(U,W) + &n(Y)o(phU, W)
(68) — (Vyo)(kY,W)}.

Finally,

(Vuo)(& (EAsYIW) = —a(VuE, (EAsY)W)

o(ap*U + ¢ohU, S(Y,W)E — S(€, W)Y)
= 2nkan(W)o(U,Y)

(69) — 2nkn(W)o(¢hU,Y).
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Consequently, substituting (63), (64), (65), (66), (67), (68) and (69) into (62),
we reach at

— aRY&EY)o(UW) + RE(EY)o(¢hU, W) — akn(U)o (Y, W)

— a(U)o(hY, W) — avn(U)o (6hY, W) + (U)o (6hY, W)

— m(U)(k +a®)o(9Y, W) + v(k + a*)n(U)o(Y, W)

(Ve (sY)E — Y]~ ahY — vghY, W) — arn(W)o(U, Y)

— aun(W)o(hY,W) — avn(W)o (U, phY') + kn(W)o(¢phU,Y)
(e + a®)n(W)o(eU,Y) + v(k + a®)n(W)o(U,Y)
—Ly{2nkan(U)o (Y, W) — 2nkn(U)o(¢hY, W) — 2nkan(Y)o (U, W)
2nkn(Y)o(ohU, W) — 2n(Vyo)(KY, W) + 2nakn(W)o(U,Y)
2nkn(W)o(ohU,Y)}.
In the last equality, putting W = £, we have

2nL{(Vyo)(kY,€) — kao(U,Y)+ ko(ohU,Y)} = v(k + a?)o(U,Y)

arko(U,Y) — apo(RY,U) — avo(¢phU,Y)
w(k +a®)o(oU,Y) + ko (¢phU,Y)

o+

(70) = (Vuo)(&[n(Y)§ = Y] = phY — vohY,§),
where

(Vyo)(kY,&) = —o(Vyé, kY) = o(ap?U + ¢hU, kY)
(71) = —ako(U,Y)+ ko(phU,Y),
and

(Vo) (kln(Y)€ — Y] = phY — vhY,€)
— (V& k(Y )€ — Y] — uhY — vohY)
o(ap®U + ohU, k[n(Y)E = Y] — phY — vohY)

= arko(U,Y)+ auo(U,hY) + avo(U, phY)
(72) —  ko(dhU,Y) + pu(k + o®)o(oU,Y) — v(k + o?)o(U,Y).
(71) and (72) are put in (70), we conclude that
[ka(2nly —1) 4+ (k+a®)(v — pe)o(U,Y)

(73) — [k(2nLy — 1) + a(vé + p)]o(hU,Y) = 0.

Here hU is written instead of U and taking into account of (6) and (33), we
have

[ka(2nly —1) + (k+a®)(v — puo)lo(hU,Y)
(74) + [k(2nLs — )¢+ a(ve + p)](k + a®)o(U,Y) = 0.
From (73) and (74), it follows for x # 0,
[K2(2nLy — 1) + (1 — V) (k + o)]o(U, V) + 2uv(k + a?)pa (U, V) = 0.
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This proves our assertion. O
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