• Title/Summary/Keyword: proton ion

Search Result 318, Processing Time 0.026 seconds

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

Multiscale simulations for estimating mechanical properties of ion irradiated 308 based on microstructural features

  • Dong-Hyeon Kwak ;Jae Min Sim;Yoon-Suk Chang ;Byeong Seo Kong ;Changheui Jang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2823-2834
    • /
    • 2023
  • Austenitic stainless steel welds (ASSWs) of nuclear components undergo aging-related degradations caused by high temperature and neutron radiation. Since irradiation leads to the change of material characteristics, relevant quantification is important for long-term operation, but limitations exist. Although ion irradiation is utilized to emulate neutron irradiation, its penetration depth is too shallow to measure bulk properties. In this study, a systematic approach was suggested to estimate mechanical properties of ion irradiated 308 ASSW. First of all, weld specimens were irradiated by 2 MeV proton to 1 and 10 dpa. Microstructure evolutions due to irradiation in δ-ferrite and austenite phases were characterized and micropillar compression tests were performed. In succession, dislocation density based stress-strain (S-S) relationships and quantification models of irradiation defects were adopted to define phases in finite element analyses. Resultant microscopic S-S curves were compared to verify material parameters. Finally, macroscopic behaviors were calculated by multiscale simulations using real microstructure based representative volume element (RVE). Validity of the approach was verified for the unirradiated specimens such that the estimated S-S curves and 0.2% offset yield strengths (YSs) which was 363.14 MPa were in 10% agreement with test. For irradiated specimens, the estimated YS were 917.41 MPa in 9% agreement.

Remote handling systems for the Selective Production of Exotic Species (SPES) facility

  • Giordano Lilli ;Lisa Centofante ;Mattia Manzolaro ;Alberto Monetti ;Roberto Oboe;Alberto Andrighetto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.378-390
    • /
    • 2023
  • The SPES (Selective Production of Exotic Species) facility, currently under development at Legnaro National Laboratories of INFN, aims at the production of intense RIB (Radioactive Ion Beams) employing the Isotope Separation On-Line (ISOL) technique for interdisciplinary research. The radioactive isotopes of interest are produced by the interaction of a multi-foil uranium carbide target with a 40 MeV 200 μA proton beam generated by a cyclotron proton driver. The Target Ion Source (TIS) is the core of the SPES project, here the radioactive nuclei, mainly neutron-rich isotopes, are stopped, extracted, ionized, separated, accelerated and delivered to specific experimental areas. Due to efficiency reasons, the TIS unit needs to be replaced periodically during operation. In this highly radioactive environment, the employment of autonomous systems allows the manipulation, transport, and storage of the TIS unit without the need for human intervention. A dedicated remote handling infrastructure is therefore under development to fulfill the functional and safety requirement of the project. This contribution describes the layout of the SPES target area, where all the remote handling systems operate to grant the smooth operation of the facility avoiding personnel exposure to a high dose rate or contamination issues.

Preparation of PVA/PAM/Zirconium phosphate Membrane for Proton Exchange Membranes (양이온교환용 PVA/PAM/Zirconium phosphate 막의 제조)

  • 임지원;황호상;김영진;남상용
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.117-125
    • /
    • 2004
  • Proton exchange membrane composed of PVA/PAM/ZrP was prepared and effect of PAM and ZrP contents on properties and performance of the membrane were investigated. PAM as a crosslinking agent was mixed into PVA solution with different concentration (7∼11 wt%) and the PVA/PAM solution was cast to prepare PVA/PAM crosslinked membrane. The membrane was treated in the solution of zirconyl chloride and phophoric acid to make a PVA/PAM/ZrP composite membrane. Methanol permeability, ion conductivity, swelling and ion exchange capacity of the membranes with different ZrP concentration were $10^{-8}∼l0^{-6}$ $\textrm{cm}^2$/sec, $10^{-3}~10^{-2}$ S/cm, 0.26∼1.17 g $H_2O$/g membrane and 2.59∼5.1 meq/g membrane, respectively. Hethanol permeability and ion conductivity of the PVA/PAM/ZrP membrane were improved by 18% and 23%, respectively, compared to those of the PVA/PAM membrane.

Polymer Electrolyte Membranes of Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer for Fuel Cell (연료전지용 Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer의 고분자 전해질 분리막)

  • Garcia, Edwin D.;Jung, Bumsuk
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.252-262
    • /
    • 2019
  • A sulfonated star branched poly(styrene-b-butadiene-b-styrene) triblock copolymer (SSBS) was synthesized with varying degrees of sulfonation. The effective sulfonation on the butadiene block was confirmed by FT-IR spectroscopy. Ion exchange capacity by titration was used to determine the degree of sulfonation. The synthesized polymer observed enhanced water uptake and proton conductivity. At room temperature, the SSBS with 25 mol% degree of sulfonation showed an outstanding proton conductivity of 0.114 S/cm, similar to that of commercial membrane, Nafion. The effect of temperature at constant relative humidity on conductivity resulted to a remarkable increase in proton conductivity. Methanol permeability studies showed a value lower than Nafion for all the sulfonated membranes. Structural nature observed using AFM showed that the membranes observed microphase separated nanostructures and the connectivity of the interionic channels.

Efficacy and Toxicity of Anti-VEGF Agents in Patients with Castration-Resistant Prostate Cancer: a Meta-analysis of Prospective Clinical Studies

  • Qi, Wei-Xiang;Fu, Shen;Zhang, Qing;Guo, Xiao-Mao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8177-8182
    • /
    • 2014
  • Background: Blocking angiogenesis by targeting vascular endothelial growth factor (VEGF) signaling pathway to inhibit tumor growth has proven to be successful in treating a variety of different metastatic tumor types, including kidney, colon, ovarian, and lung cancers, but its role in castration-resistant prostate cancer (CRPC) is still unknown. We here aimed to determine the efficacy and toxicities of anti-VEGF agents in patients with CRPC. Materials and Methods: The databases of PubMed, Web of Science and abstracts presented at the American Society of Clinical Oncology up to March 31, 2014 were searched for relevant articles. Pooled estimates of the objective response rate (ORR) and prostate-specific antigen (PSA) response rate (decline ${\geq}50%$) were calculated using the Comprehensive Meta-Analysis (version 2.2.064) software. Median weighted progression-free survival (PFS) and overall survival (OS) time for anti-VEGF monotherapy and anti-VEGF-based doublets were compared by two-sided Student's t test. Results: A total of 3,841 patients from 19 prospective studies (4 randomized controlled trials and 15 prospective nonrandomized cohort studies) were included for analysis. The pooled ORR was 12.4% with a higher response rate of 26.4% (95%CI, 13.6-44.9%) for anti-VEGF-based combinations vs. 6.7% (95%CI, 3.5-12.7%) for anti-VEGF alone (p=0.004). Similarly, the pooled PSA response rate was 32.4% with a higher PSA response rate of 52.8% (95%CI: 40.2-65.1%) for anti-VEGF-based combinations vs. 7.3% (95%CI, 3.6-14.2%) for anti-VEGF alone (p<0.001). Median PFS and OS were 6.9 and 22.1 months with weighted median PFS of 5.6 vs. 6.9 months (p<0.001) and weighted median OS of 13.1 vs. 22.1 months (p<0.001) for anti-VEGF monotherapy vs. anti-VEGF-based doublets. Conclusions: With available evidence, this pooled analysis indicates that anti-VEGF monotherapy has a modest effect in patients with CRPC, and clinical benefits gained from anti-VEGF-based doublets appear greater than anti-VEGF monotherapy.

The Studies of Irradiation Hardening of Stainless Steel Reactor Internals under Proton and Xenon Irradiation

  • Xu, Chaoliang;Zhang, Lu;Qian, Wangjie;Mei, Jinna;Liu, Xiangbing
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.758-764
    • /
    • 2016
  • Specimens of stainless steel reactor internals were irradiated with 240 keV protons and 6 MeV Xe ions at room temperature. Nanoindentation constant stiffness measurement tests were carried out to study the hardness variations. An irradiation hardening effect was observed in proton- and Xe-irradiated specimens and more irradiation damage causes a larger hardness increment. The Nix-Gao model was used to extract the bulk-equivalent hardness of irradiation-damaged region and critical indentation depth. A different hardening level under H and Xe irradiation was obtained and the discrepancies of displacement damage rate and ion species may be the probable reasons. It was observed that the hardness of Xe-irradiated specimens saturate at about 2 displacement/atom (dpa), whereas in the case of proton irradiation, the saturation hardness may be more than 7 dpa. This discrepancy may be due to the different damage distributions.

Transport of Metal Ions Across Bulk Liquid Membrane by Lipophilic Acyclic Polyether Dicarboxylic Acids (Lipophilic Acyclic Polyether Dicarboxylic Acid 에 의한 액체막을 통한 금속이온의 이동)

  • Jo, Mun Hwan;Jo, Seong Ho;Lee, In Jong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.129-135
    • /
    • 1994
  • Acyclic polyether dicarboxylic acid have been studied as metal cation carriers in a bulk liquid membrane system. The proton-ionizable ligands feature allows the coupling of a cation transport to reverse proton transport. This feature offers promise for the effective separation and concentration of metal cations with the metal cation transport being driven by a pH gradient. Metal cation transport increased regularly with increasing hydroxide($H^-$) concentration of source phase and with proton($H^+$) concentration of receiving phase. Competitive transport by the acyclic polyether dicarboxylic acids is selective for calcium ion over other alkaline-earth cations.

  • PDF

Acidic Water Monolayer on Ru(0001)

  • Kim, Youngsoon;Moon, Eui-Seong;Shin, Sunghwan;Yi, Seung-Hoon;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.268-268
    • /
    • 2013
  • Water molecules on a Ru(0001) surface are anomalously acidic compared to bulk water. The observation was made by conducting reactive ion scattering, reflection absorption infrared spectroscopy, and temperature-programmed desorption measurements for the adsorption of ammonia onto a water layer formed on Ru(0001). The study shows that the water molecules in the first intact $H_2O$ bilayer spontaneously release a proton to NH3 adsorbates to produce $NH_4{^+}$. However, such proton transfer does not occur for $H_2O$, OH, and H in a mixed adsorption layer or for $H_2O$ in a thick ice film surface.

  • PDF

Monte Carlo simulations of chromium target under proton irradiation of 17.9, 22.3 MeV

  • Kara, A.;Yilmaz, A.;Yigit, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3158-3163
    • /
    • 2021
  • Chromium material is commonly used for fusion plasma facing applications because of the low neutron activation property. The Monte Carlo method is one of the useful ways to investigate the ion-target interactions. In this study, Chromium target irradiated by protons was investigated using Monte Carlo based simulation tools. In this context, the calculations of radiation damage on Chromium material irradiated with protons at 17.9 and 22.3 MeV energies were carried out using GEANT4 and SRIM codes. Besides, the cross sections for proton interaction with Chromium target were calculated by the TALYS 1.9 code using CTM + FGM, BSFGM, and GSFM level densities. As a result, GEANT4, SRIM and TALYS 1.9 codes provide a suitable tool for the predictions of radiation damage and cross cross section with proton irradiation.