References
- G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, New York, 2007.
- Y. Takayama, R. Kasada, Y. Sakamoto, K. Yabuuchi, A. Kimura, M. Ando, D. Hamaguchi, Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single- and dual-ion beam irradiation, J. Nucl. Mater. 442 (2013) S23-S27. https://doi.org/10.1016/j.jnucmat.2012.12.033
- S.K. Kang, J.Y. Kim, C.P. Park, H.U. Kim, D. Kwon, Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests, J. Mater. Res. 25 (2010) 337-343. https://doi.org/10.1557/JMR.2010.0045
- J.P. Biersack, L.G. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instrum. Methods 174 (1980) 257-269. https://doi.org/10.1016/0029-554X(80)90440-1
- ASTM, Standard Practice for Neutron Radiation Damage Simulation by Charged-particle Irradiation (ASTM 521-96), West Conshohocken, PA, 2003.
- R.D. Carter, D.L. Damcott, M. Atzmon, G.S. Was, E.A. Kenik, Effects of proton irradiation on the microstructure and microchemistry of type 304L stainless steel, J. Nucl. Mater. 205 (1993) 361-373. https://doi.org/10.1016/0022-3115(93)90101-4
- G. Gupta, Z. Jiao, A.N. Ham, J.T. Busby, G.S. Was, Microstructural evolution of proton irradiated T91, J. Nucl. Mater. 351 (2006) 162-173. https://doi.org/10.1016/j.jnucmat.2006.02.028
- W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids 46 (1998) 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
- R. Kasada, Y. Takayama, K. Yabuuchi, A. Kimura, A new approach to evaluate irradiation hadening of ion-irradiated ferritic alloys by nano-indentation techniques, Fusion Eng. Des. 86 (2011) 2658-2661. https://doi.org/10.1016/j.fusengdes.2011.03.073
- H.F. Huang, D.H. Li, J.J. Li, R.D. Liu, G.H. Lei, Nanostructure variations and their effects on mechanical strength of Ni-17Mo-7Cr alloy under xenon ion irradiation, Mater. Transact. 55 (2014) 1243-1247. https://doi.org/10.2320/matertrans.M2014075
- K. Yabuuchi, Y. Kuribayashi, S. Nogami, R. Kasada, A. Hasegawa, Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation, J. Nucl. Mater. 446 (2014) 142-147. https://doi.org/10.1016/j.jnucmat.2013.12.009
- L.E. Samuels, T.O. Mulhearn, An experimental investigation of the deformed zone associated with indentation hardness impressions, J. Mech. Phys. Solids 5 (1957) 125-134. https://doi.org/10.1016/0022-5096(57)90056-X
- X. Liu, R. Wang, A. Ren, J. Jiang, C. Xu, P. Huang, W. Qian, Y. Wu, C. Zhang, Evaluation of radiation hardening in ionirradiated Fe based alloys by nanoindentation, J. Nucl. Mater. 444 (2014) 1-6. https://doi.org/10.1016/j.jnucmat.2013.09.026
- C.D. Hardie, C.A. Williams, S. Xu, S.G. Roberts, Effects of irradiation temperature and dose rate on the mechanical properties of self-ion implanted Fe and Fe-Cr alloys, J. Nucl. Mater. 439 (2013) 33-40. https://doi.org/10.1016/j.jnucmat.2013.03.052
- E.H. Lee, J.D. Hunn, T.S. Byun, L.K. Mansur, Effects of helium on radiation-induced defect microstructure in austenitic stainless steel, J. Nucl. Mater. 280 (2000) 18-24. https://doi.org/10.1016/S0022-3115(00)00038-6
- I.I. Chernov, A.N. Kalashnikov, B.A. Kalin, S. Yu, Binyukova, Gas bubbles evolution peculiarities in ferriticemartensitic and austenitic steels and alloys under helium-ion irradiation, J. Nucl. Mater. 323 (2003) 341-345. https://doi.org/10.1016/j.jnucmat.2003.08.010
- H. Zhang, C. Zhang, Y. Yang, Y. Meng, J. Jang, A. Kimura, Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation, J. Nucl. Mater. 455 (2014) 349-353. https://doi.org/10.1016/j.jnucmat.2014.06.062
- M. Chai, W. Lai, Z. Li, W. Feng, Radiation damage of 1Cr18Ni9Ti and Zr-Ti-Al alloys due to energetic particle irradiation, Acta Metall. Sin. (Engl. Lett.) 25 (2012) 29-39.
- D. Yun, M.A. Kirk, P.M. Baldo, J. Rest, A.M. Yacout, Z.Z. Insepov, In situ TEM investigation of Xe ion irradiation induced defects and bubbles in pure molybdenum single crystal, J. Nucl. Mater. 437 (2013) 240-249. https://doi.org/10.1016/j.jnucmat.2013.01.305
- G.R. Odette, G.E. Lucas, The effects of intermediate temperature irradiation on the mechanical behavior of 300-series austenitic stainless steels, J. Nucl. Mater. 179-181 (1991) 572-576. https://doi.org/10.1016/0022-3115(91)90152-W
- J.D. Hunn, E.H. Lee, T.S. Byun, L.K. Mansur, Helium and hydrogen induced hardening in 316LN stainless steel, J. Nucl. Mater. 282 (2000) 131-136. https://doi.org/10.1016/S0022-3115(00)00424-4
Cited by
- Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation vol.23, pp.6, 2016, https://doi.org/10.1007/s12540-017-7141-7
- Radiation damage in helium ion-irradiated reduced activation ferritic/martensitic steel vol.50, pp.1, 2016, https://doi.org/10.1016/j.net.2017.10.012
- A Study of the Effect of Ion Irradiation on the Mechanical Properties of Eurofer 97 Steel vol.13, pp.1, 2016, https://doi.org/10.1134/s1027451019010075
- Irradiation studies on a reactor pressure vessel steel using Fe+ ion vol.6, pp.10, 2019, https://doi.org/10.1088/2053-1591/ab3f8b
- Hardening and Creep of Ion Irradiated CLAM Steel by Nanoindentation vol.10, pp.1, 2020, https://doi.org/10.3390/cryst10010044
- The Studies of Irradiation Hardening and RIS on IASCC of Reactor Internals Bolts vol.871, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/kem.871.92
- Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding vol.84, pp.None, 2016, https://doi.org/10.1016/j.jmst.2020.12.058