DOI QR코드

DOI QR Code

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S. (Department of Chemical Engineering and Advanced Materials, Newcastle University) ;
  • Zhang, G. (Department of Chemical Engineering and Advanced Materials, Newcastle University)
  • Received : 2018.04.05
  • Accepted : 2018.06.11
  • Published : 2018.09.30

Abstract

Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

Keywords

References

  1. Ding, Y., Y. Li and W. Huang, Mater. Res. Bull., 2017, 95(Supplement C), 328-333. https://doi.org/10.1016/j.materresbull.2017.08.004
  2. Wen, Y., S. Yang, S. Gu, X. Ye and Z. Wen, Solid State Ionics, 2017, 308, 167-172. https://doi.org/10.1016/j.ssi.2017.06.011
  3. Bonanos, N., K.S. Knight and B. Ellis, Solid State Ionics, 1995, 79(0), 161-170. https://doi.org/10.1016/0167-2738(95)00056-C
  4. Iwahara, H., T. Esaka, H. Uchida and N. Maeda, Solid State Ionics, 1981, 3-4(0), 359-363. https://doi.org/10.1016/0167-2738(81)90113-2
  5. Kreuer, K.D., Annu. Rev. Mater. Res., 2003, 33(1), 333-359. https://doi.org/10.1146/annurev.matsci.33.022802.091825
  6. Kreuer, K.D., T. Dippel, Y.M. Baikov and J. Maier, Solid State Ionics, 1996, 86-88, Part 1(0), 613-620. https://doi.org/10.1016/0167-2738(96)00221-4
  7. Kreuer, K.D., E. Schonherr and J. Maier, Solid State Ionics, 1994, 70-71, Part 1(0), 278-284. https://doi.org/10.1016/0167-2738(94)90323-9
  8. Norby, T., Solid State Ionics, 1999, 125(1-4), 1-11. https://doi.org/10.1016/S0167-2738(99)00152-6
  9. Ricote, S., N. Bonanos and G. Caboche, Solid State Ionics, 2009, 180(14-16), 990-997. https://doi.org/10.1016/j.ssi.2009.03.016
  10. Animitsa, I., A. Neiman, N. Kochetova, D. Korona and A. Sharafutdinov, Solid State Ionics, 2006, 177(26), 2363-2368. https://doi.org/10.1016/j.ssi.2006.07.005
  11. Grimaud, A., J.M. Bassat, F. Mauvy, P. Simon, A. Canizares, B. Rousseau, M. Marrony, and J.C. Grenier, Solid State Ionics, 2011, 191(1), 24-31. https://doi.org/10.1016/j.ssi.2011.03.020
  12. Hancke, R., Z. Li and R. Haugsrud, J. Electrochem. Soc., 2013, 160(8), F757-F763. https://doi.org/10.1149/2.020308jes
  13. Oishi, M., S. Akoshima, K. Yashiro, K. Sato, J. Mizusaki, and T. Kawada, Solid State Ionics, 2008, 179(39), 2240-2247. https://doi.org/10.1016/j.ssi.2008.08.005
  14. Sanders, M. and R. O'Hayre, J. Mater. Chem., 2010, 20(30), 6271-6281. https://doi.org/10.1039/c0jm00064g
  15. W. Grover Coors and R. Swartzlander, Proceedings of the 26th Riso Int. Sympos. Mater. Sci. Solid State Electrochem., 2005, (September), 185-196.
  16. W. Grover, C., Solid State Ionics, 2007, 178(7-10), 481-485. https://doi.org/10.1016/j.ssi.2006.11.004
  17. Coors, W.G., J. Power Sources, 2003, 118(1-2), 150-156. https://doi.org/10.1016/S0378-7753(03)00072-7
  18. Subramaniyan, A., J. Tong, R.P. O'Hayre and N.M. Sammes, J. Am. Ceram. Soc., 2011, 94(6), 1800-1804. https://doi.org/10.1111/j.1551-2916.2010.04303.x
  19. Al, S., Investigation and evaluation of water permeation through $BaCe_{0. 8}Y_{0. 2}O_{3-d}$ electrolyte for solid oxide fuel cells. 2016.
  20. Coors, W.G. and D.W. Readey, J. Am. Ceram. Soc., 2002, 85(11), 2637-2640. https://doi.org/10.1111/j.1151-2916.2002.tb00507.x
  21. Aguadero, A., L. Fawcett, S. Taub, R. Woolley, K.-T. Wu, N. Xu, J. Kilner, and S. Skinner, J. Mater. Sci., 2012, 47(9), 3925-3948. https://doi.org/10.1007/s10853-011-6213-1
  22. Kilner, J.A. and M. Burriel, Annu. Rev. Mater. Res., 2014, 44(1), 365-393. https://doi.org/10.1146/annurev-matsci-070813-113426
  23. Merkle, R. and J. Maier, Angew. Chem. Int. Ed., 2008, 47(21), 3874-3894. https://doi.org/10.1002/anie.200700987
  24. Leonhardt, M., R.A. De Souza, J. Claus and J. Maier, J. Electrochem. Soc., 2002, 149(2), J19-J26. https://doi.org/10.1149/1.1430723
  25. Yu, J.H., J.-S. Lee and J. Maier, Angew. Chem. Int. Ed., 2007, 46(47), 8992-8994. https://doi.org/10.1002/anie.200701765
  26. Mahato, N., A. Banerjee, A. Gupta, S. Omar and K. Balani, Prog. Mater. Sci., 2015, 72(Supplement C), 141-337. https://doi.org/10.1016/j.pmatsci.2015.01.001
  27. Fajin, J.L.C., M.N. D. S. Cordeiro and J.R.B. Gomes, J. Phys. Chem. A, 2014, 118(31), 5832-5840. https://doi.org/10.1021/jp411500j
  28. Karlberg, G.S., G. Wahnstrom, C. Clay, G. Zimbitas and A. Hodgson, J. Chem. Phys., 2006, 124(20), 204712. https://doi.org/10.1063/1.2200347
  29. Vollestad, E., C.K. Vigen, A. Magraso and R. Haugsrud, J. Membr. Sci., 2014, 461, 81-88. https://doi.org/10.1016/j.memsci.2014.03.011
  30. Kim, J.-H., Y.-M. Kang, M.-S. Byun and K.-T. Hwang, Thin Solid Films, 2011, 520(3), 1015-1021. https://doi.org/10.1016/j.tsf.2011.08.013
  31. Li, Y., P.-C. Su, L.M. Wong and S. Wang, J. Power Sources, 2014, 268, 804-809. https://doi.org/10.1016/j.jpowsour.2014.06.128
  32. Yajima, T., H. Suzuki, T. Yogo and H. Iwahara, Solid State Ionics, 1992, 51(1-2), 101-107. https://doi.org/10.1016/0167-2738(92)90351-O
  33. Bhide, S.V. and A.V. Virkar, J. Electrochem. Soc., 1999, 146(6), 2038-2044. https://doi.org/10.1149/1.1391888
  34. Tanner, C.W. and A.V. Virkar, J. Electrochem. Soc., 1996, 143(4), 1386-1389. https://doi.org/10.1149/1.1836647
  35. Si, Y., R. Jiang, J.-C. Lin, H.R. Kunz and J.M. Fenton, J. Electrochem. Soc., 2004, 151(11), A1820-A1824. https://doi.org/10.1149/1.1796446
  36. Ralph, T.R. and Hogarth, M. P, Plat. Metals Rev., 2002, 46(3), 117-135.
  37. Laosiripojana, N., W. Sangtongkitcharoen and S. Assabumrungrat, Fuel, 2006, 85(3), 323-332. https://doi.org/10.1016/j.fuel.2005.06.013