DOI QR코드

DOI QR Code

Electrochemical Behavior of Nanostructured Fe-Pd Alloy During Electrodeposition on Different Substrates

  • Rezaei, Milad (Department of Mining & Metallurgical Engineering, Amirkabir University of Technology) ;
  • Haghshenas, Davoud F. (Department of Mining & Metallurgical Engineering, Amirkabir University of Technology) ;
  • Ghorbani, Mohammad (Department of Materials Science and Engineering, Sharif University of Technology) ;
  • Dolati, Abolghasem (Department of Materials Science and Engineering, Sharif University of Technology)
  • Received : 2018.04.05
  • Accepted : 2018.05.23
  • Published : 2018.09.30

Abstract

In this work, Fe-Pd alloy films have been electrodeposited on different substrates using an electrolyte containing $[Pd(NH_3)_4]^{2+}$ (0.02 M) and $[Fe-Citrate]^{2+}$ (0.2 M). The influences of substrate and overpotential on chemical composition, nucleation and growth kinetics as well as the electrodeposited films morphology have been investigated using energy dispersive X-ray spectroscopy (EDS), current-time transients, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) patterns. In all substrates - brass, copper and sputtered fluorine doped tin oxide on glass (FTO/glass) - Fe content of the electrodeposited alloys increases by increasing the overpotential. Also the cathodic current efficiency is low due to high rate of $H_2$ co-reduction. Regarding the chronoamperometry current-time transients, it has been demonstrated that the nucleation mechanism is instantaneous with a typical three dimensional (3D) diffusion-controlled growth in the case of brass and copper substrates; while for FTO, the growth mode changes to 3D progressive. At a constant overpotential, the calculated number of active nucleation sites for metallic substrates is much higher than that of FTO/glass; however by increasing the overpotential, the number of active nucleation sites increases. The SEM micrographs as well as the XRD patterns reveal the formation of Fe-Pd alloy thin films with nanostructure arrangement and ultra-fine grains.

Keywords

References

  1. A. Afshar, A.G. Dolati, M. Ghorbani, Mater. Chem. Phys., 2003, 77(2), 352-358. https://doi.org/10.1016/S0254-0584(02)00017-2
  2. F.M. Takata, P.T.A. Sumodjo, Electrochim. Acta, 2007, 52(20), 6089-6096. https://doi.org/10.1016/j.electacta.2007.03.048
  3. Y. Ito, A. Miyazaki, S. Valiyaveettil, T. Enoki, J. Phys. Chem. C, 2010, 114(27), 11699-11702. https://doi.org/10.1021/jp910187r
  4. H. Liu, F. Wang, Y. Zhao, J. Liu, K.C. Park, M. Endo, J. Electroanal. Chem., 2009, 633(1), 15-18. https://doi.org/10.1016/j.jelechem.2009.04.022
  5. B. Jeon, S. Yoon, B.Y. Yoo, Electrochim. Acta, 2010, 56(1), 401-405. https://doi.org/10.1016/j.electacta.2010.08.062
  6. N. Tasaltin, S. Ozturk, N. Kilinc, H. Yuzer, Z.Z. Ozturk, J. Alloys Compd., 2011, 509(9), 3894-3898. https://doi.org/10.1016/j.jallcom.2010.12.153
  7. F. Wang, S. Doi, K. Hosoiri, H. Yoshida, T. Kuzushima, M. Sasadaira, T. Watanabe, Electrochim. Acta, 2006, 51(20), 4250-4254. https://doi.org/10.1016/j.electacta.2005.11.044
  8. T. Edler, S. Hamann, A. Ludwig, S.G. Mayr, Scr. Mater., 2011, 64(1), 89-92. https://doi.org/10.1016/j.scriptamat.2010.09.013
  9. S. Hamann, M.E. Gruner, S. Irsen, J. Buschbeck, C. Bechtold, I. Kock, S.G. Mayr, A. Savan, S. Thienhaus, E. Quandt, S. Fahler, P. Entel, A. Ludwig, Acta Mater., 2010, 58(18), 5949-5961. https://doi.org/10.1016/j.actamat.2010.07.011
  10. V. Haehnel, C. Mickel, S. Fahler, L. Schultz, H. Schlorb, J. Phys. Chem. C, 2010, 114(45), 19278-19283. https://doi.org/10.1021/jp1077455
  11. V. Haehnel, S. Fahler, L. Schultz, H. Schlorb, Electrochem. Commun., 2010, 12(8), 1116-1119. https://doi.org/10.1016/j.elecom.2010.05.043
  12. S.A. Wilson, et al., Mater. Sci. Eng. R, 2007, 56(1-6), 1-129. https://doi.org/10.1016/j.mser.2007.03.001
  13. S. Inoue, K. Inoue, K. Koterazawa, K. Mizuuchi, Mater. Sci. Eng. A, 2003, 339(120), 29-34. https://doi.org/10.1016/S0921-5093(02)00101-6
  14. J. Buschbeck I. Lindemann, L. Schultz, S. Fahler, Phys. Rev. B, 2007, 76(20), 205421. https://doi.org/10.1103/PhysRevB.76.205421
  15. H. Shima, K. Oikawa, A. Fujita, K. Fukamichi, K. Ishida, J. Magn. Magn. Mater., 2004, 272, 2173-2174.
  16. M. Rezaei, M. Ghorbani, A. Dolati, Electrochim. Acta, 2010, 56(1), 483-490. https://doi.org/10.1016/j.electacta.2010.09.022
  17. F.M. Takata, G. Pattanaik, W.A. Soffa, P.T.A. Sumodjo, G. Zangari, Electrochem. Commun., 2008, 10(4), 568-571. https://doi.org/10.1016/j.elecom.2008.01.041
  18. S. Doi, F. Wang, K. Hosoiri, T. Watanabe, Mater. Trans., 2003, 44(4), 649-652. https://doi.org/10.2320/matertrans.44.649
  19. K.J. Bryden, J.Y. Ying, J. Electrochem. Soc, 1998, 145(10), 3339-3346. https://doi.org/10.1149/1.1838809
  20. S.C. Hernandez, B.Y. Yoo, E. Stefanescu, S. Khizroev, N.V. Myung, Electrochim. Acta, 2008, 53(18), 5621-5627. https://doi.org/10.1016/j.electacta.2008.03.001
  21. D. Pecko, K.Z. Rozman, P.J. McGuiness, B. Pihlar, S. Kobe, J. Appl. Phys., 2010, 107(9), 09A712. https://doi.org/10.1063/1.3337639
  22. K.Z. Rozman, D. Pecko, L. Suhodolcan, P.J. McGuiness, S. Kobe, J. Alloys Compd., 2011, 509(2), 551-555. https://doi.org/10.1016/j.jallcom.2010.09.108
  23. M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci., 2006, 51(4), 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003
  24. K. Sekiguchi, M. Shimizu, E. Saitoh, H. Miyajima, J. Magn. Magn. Mater., 2004, 282, 143-146. https://doi.org/10.1016/j.jmmm.2004.04.034
  25. M. Rezaei, Synthesis and characterization of Fe-Pd shape memory thin films by electrodeposition, Master Thesis, Department of Materials Science and Engineering, Sharif University of Technology, Iran, 2010.
  26. M. Ghorbani, A. Iraji zad, A. Dolati, R. Ghasempour, J. Alloys Compd., 2005, 386(1-2), 43-46. https://doi.org/10.1016/j.jallcom.2004.05.056
  27. E. Gomez, A. Labarta, A. Llorente, E. Valles, J. Electroanal. Chem., 2001, 517(1-2), 63-68. https://doi.org/10.1016/S0022-0728(01)00670-2
  28. I. Bakonyi, L. Peter, Prog. Mater. Sci., 2010, 55(3), 107-245. https://doi.org/10.1016/j.pmatsci.2009.07.001
  29. F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K. Lee, N.V. Myung, Electrochim. Acta, 2008, 53(28), 8103-8117. https://doi.org/10.1016/j.electacta.2008.06.015
  30. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions, Marcel Dekker, New York, 1985.
  31. R.N. Goldberg, L.H. Hepler, Chem. Rev., 1968, 68(2), 229-252. https://doi.org/10.1021/cr60252a004
  32. E.M. Martell, R.M. Smith, Critical Stabilities Constants, Plenum Press, New York, 1989.
  33. M. Rezaei S.H. Tabaian, D.F. Haghshenas, Electrochim. Acta, 2012, 59, 360-366. https://doi.org/10.1016/j.electacta.2011.10.081
  34. M. Rezaei S.H. Tabaian, D.F. Haghshenas, J. Electroanal. Chem., 2012, 687, 95-101. https://doi.org/10.1016/j.jelechem.2012.10.007
  35. M. Rezaei S.H. Tabaian, D.F. Haghshenas, Electrochim. Acta, 2013, 87, 381-387. https://doi.org/10.1016/j.electacta.2012.09.092
  36. M. Rezaei S.H. Tabaian, D.F. Haghshenas, J. Mater. Chem. A, 2014, 2(13), 4588-4597. https://doi.org/10.1039/C3TA15220K
  37. A. Brenner, Electrodeposition of Alloys, Vol. 1 and 2, Academic Press, New York and Landon, 1963.
  38. D. Landolt, Electrochim. Acta, 1994, 39(8-9), 1075-1090. https://doi.org/10.1016/0013-4686(94)E0022-R
  39. A.G. Dolati, M. Ghorbani, A. Afshar, Surf. Coat. Tech., 2003, 166, 105-110. https://doi.org/10.1016/S0257-8972(02)00669-2
  40. A.E. Alvarez, D.R. Salinas, Electrochim. Acta, 2010, 55(11), 3714-3720. https://doi.org/10.1016/j.electacta.2010.01.076
  41. A.E. Alvarez, D.R. Salinas, J. Electroanal. Chem., 2004, 566(2), 393-400. https://doi.org/10.1016/j.jelechem.2003.11.051
  42. A. Milchev, Electrocrystallization: Fundamentals of Nucleation and Growth, Kluwer Academic Publishers, Boston, 2002.
  43. A. Dolati, M. Ghorbani, M.R. Ahmadi, J. Electroanal. Chem., 2005, 577(1), 1-8. https://doi.org/10.1016/j.jelechem.2004.10.024
  44. L. Soleimany, A. Dolati, M. Ghorbani, J. Electroanal. Chem., 2010, 645(1), 28-34. https://doi.org/10.1016/j.jelechem.2010.04.007
  45. B. Scharifker, G. Hills, Electrochim. Acta, 1983, 28(7), 879-889. https://doi.org/10.1016/0013-4686(83)85163-9
  46. B.R. Scharifker, J. Mostany, Electroanal. Chem., 1984, 177(1-2), 13-23. https://doi.org/10.1016/0022-0728(84)80207-7
  47. L. Heerman, A. Tarallo, J. Electroanal. Chem., 1998, 451(1-2), 101-109. https://doi.org/10.1016/S0022-0728(98)00101-6
  48. L. Heerman, A. Tarallo, J. Electroanal. Chem., 1999, 470(1), 70-76. https://doi.org/10.1016/S0022-0728(99)00221-1
  49. Z. Zhang, D.P. Barkey, J. Electrochem. Soc., 2007, 154(10), D550-D556. https://doi.org/10.1149/1.2768905
  50. A. Sahari, A. Azizi, G. Schmerber, M. Abes, J.P. Bucher, A. Dinia, Catal. Today, 2006, 113(3-4), 257-262. https://doi.org/10.1016/j.cattod.2005.11.075
  51. C. Han, Q. Liu, D.G. Ivey, Electrochim. Acta, 2009, 54(12), 3419-3427. https://doi.org/10.1016/j.electacta.2008.12.064
  52. A.S. Taguchi, F.R. Bento, L.H. Mascaro, J. Braz. Chem. Soc., 2008, 19(4), 727-733. https://doi.org/10.1590/S0103-50532008000400017
  53. S.P. Gou, I.W. Sun, Electrochim. Acta, 2008, 53(5), 2538-2544. https://doi.org/10.1016/j.electacta.2007.10.039
  54. E. Nouri, A. Dolati, Mater. Res. Bull., 2007, 42(9), 1769-1776. https://doi.org/10.1016/j.materresbull.2006.11.039
  55. A.N. Correia, M.X. Facanha, P. de Lima-Neto, Surf. Coat. Tech., 2007, 201(16-17), 7216-7221. https://doi.org/10.1016/j.surfcoat.2007.01.029
  56. A. Dolati, M. Sababi, E. Nouri, M. Ghorbani, Mater. Chem. Phys., 2007, 102(2-3), 118-124. https://doi.org/10.1016/j.matchemphys.2006.07.009
  57. S. Basavanna, Y.A. Naik, J. Appl. Electrochem., 2009, 39(120), 1975-1982. https://doi.org/10.1007/s10800-009-9907-1
  58. I. Petersson, E. Ahlberg, J. Electroanal. Chem., 2000, 485(2), 166-177. https://doi.org/10.1016/S0022-0728(00)00113-3
  59. F.R. Bento, L.H. Mascaro, Surf. Coat. Tech., 2006, 201, 1752-1756. https://doi.org/10.1016/j.surfcoat.2006.02.055
  60. A.N. Correia, R.C.B. de Oliveira. P. de Lima-Neto, J. Braz. Chem. Soc., 2006, 17(1), 90-97. https://doi.org/10.1590/S0103-50532006000100014
  61. Z.N. Yang, Z. Zhang, J.Q. Zhang, Surf. Coat. Tech., 2006, 200(16-17), 4810-4815. https://doi.org/10.1016/j.surfcoat.2005.04.026
  62. M. Jayakumar, K.A. Venkatesan, T.G. Srinivasan, P.R. Vasudeva Rao, Electrochim. Acta, 2009, 54(26), 6747-6755. https://doi.org/10.1016/j.electacta.2009.06.043
  63. H.J. Yun, S.M.S.I. Dulal, C.B. Shin, C.K. Kim, Electrochim. Acta, 2008, 54(2), 370-375. https://doi.org/10.1016/j.electacta.2008.07.068
  64. S.M.S.I. Dulal, H.J. Yun, C.B. Shin, C.K. Kim, Electrochim. Acta, 2007, 53(2), 934-943. https://doi.org/10.1016/j.electacta.2007.08.006
  65. I. Tabakovic, J. Qiu, S. Riemer, M. Sun, V. Vas'ko, M. Kief, Electrochim. Acta, 2008, 53(5), 2483-2493. https://doi.org/10.1016/j.electacta.2007.10.045
  66. M.R. Khelladi, L. Mentar, M. Boubatra, A. Azizi, A. Kahoul, Mater. Chem. Phys., 2010, 122(2-3), 449-453. https://doi.org/10.1016/j.matchemphys.2010.03.023
  67. E. Gomez, E. Guaus, F. Sanz, E. Valles, J. Electroanal. Chem., 1999, 465(1), 63-71. https://doi.org/10.1016/S0022-0728(99)00055-8
  68. W. Plieth, Electrochemistry for Materials Science, Elsevier, Amsterdam, 2008.
  69. B.D. Cullity, Elements of X-ray Diffraction, Second Ed., Addison-Wesley Pub. Co., Reading, MA, 1978.
  70. J.R. Ares, A. Pascual, I.J. Ferrer, C. Sanchez, Thin Solid Films, 2005, 480, 477-481.