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a b s t r a c t

Chromium material is commonly used for fusion plasma facing applications because of the low neutron
activation property. The Monte Carlo method is one of the useful ways to investigate the ion-target
interactions. In this study, Chromium target irradiated by protons was investigated using Monte Carlo
based simulation tools. In this context, the calculations of radiation damage on Chromium material
irradiated with protons at 17.9 and 22.3 MeV energies were carried out using GEANT4 and SRIM codes.
Besides, the cross sections for proton interaction with Chromium target were calculated by the TALYS 1.9
code using CTM þ FGM, BSFGM, and GSFM level densities. As a result, GEANT4, SRIM and TALYS 1.9 codes
provide a suitable tool for the predictions of radiation damage and cross cross section with proton
irradiation.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Global energy demand is growing rapidly, because of population
and economic growth. In this context, if nuclear fusion energy can be
commercialized, it can be a hope for humanity and the future of the
world. However, the reliable functioning and structural integrity of
fusion reactors depend on experiments and calculations containing
the interactions of charged particles with structural fusionmaterials.
These experiments lead tomaterial burden and a hugewaste of time.
Therefore, the nuclear model calculations are great contributions
before the engineering applications [1e5]. Choice of the material
against high-temperature and nuclear radiation provides an impor-
tant contribution to the success of the reactor [3,6]. As with fission
reactors, the use of steel in the design of fusion reactors is quite
common. Cr material is the most versatile and widely used element
in steel alloying. It is commonly used in fusion plasma-facing ap-
plications due to the low neutron activation property. In this study,
the calculations on the cross section and detailed radiation damage
for Chromium irradiated with protons at 17.9 and 22.3 MeV energies
are performed using GEANT4 [7,8], SRIM [9,10] and TALYS 1.9 [11]
codes based on Monte Carlo methods.
by Elsevier Korea LLC. This is an
2. Monte Carlo simulations

The consistent calculation and analysis using nuclear models are
the requirement to explain the particle-target nucleus interactions.
The further improvement of nuclear structure and reaction theory
depends onwhich linked to put forward new nuclearmodels and to
figure out nucleoninduced reactions [4,12e16]. TALYS is software
that is widely used and allows us to examine the mechanisms of
nuclear reaction in detail. It is known that it provides success in the
simulation of particle and photon-induced nuclear reactions
especially in the range of 1 keV and 200 MeV energy. The TALYS
code provides

a complete description of all reaction channels and observables
and is also user-friendly. Besides, this code also provides informa-
tion to the user about the energy spectrum, distribution, and even
angle-related situations. Obtaining the nuclear cross section cal-
culations in the code uses various microscopic and phenomeno-
logical level density models. Besides, the TALYS code allows us to
study the direct interaction, equilibrium, and pre-equilibrium
processes in detail Koning et al. [11]. The calculations of the equi-
librium and pre-equilibrium emissions at this code can be made by
the Hauser-Feshbach model [17] and Exciton model [18]; respec-
tively. TALYS reaction code uses the optical model parameterization
for protons and neutrons on a nucleus-by-nucleus basis for
obtaining the nuclear cross sections and the transition coefficients.
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The spectrum of the pre-equilibrium particle emission in the TALYS
reaction code is given as,

dsPEk
dEk

¼ sCF
Xpmax
p

pp¼p0
p

Xpmax
v

pv¼p0
v

Wkðpp;hp; pv; hv; EkÞtðpp; hp; pv;hvÞ

� Pðpp;hp;pv; hvÞ (1)

where, the hp(hn) and pp(pn) are the proton (neutron) hole number
and the proton (neutron) particle number, respectively. Ek and Wk

correspond to the emission energy and emission rate for an ejectile
k, respectively. sCF represents the compound-nucleus formation
cross section predicted using the optical model. P denotes the part
of the pre-compound flux for the emission to survive the previous
states and now passes through the (pp, hp, pn, hn) configurations,
averaged over time. The quantity t is the average lifetime of the
exciton state. The initial neutron and proton particle numbers
correspond to the terms p0n ¼ Np and p0p ¼ Zp, respectively with
Zp(Np) the proton (neutron) number of the incident particle [11].
The total level density can be written as,
Fig. 1. Total cross section of particle production in p þ natCr
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where the level density r(Ex, J, P) at a certain spin J and parity P is
the number of levels per MeV around Ex excitation energy [11].

SRIM (The Stopping and Range of Ions in Matter), a widely used
tool for binary collision approximation simulations, uses semi-
empirical relations. The SRIM code founded by Ziegler is software
that examines the effects of ion and atom interactions with a
quantum mechanical approach [9]. It uses the Bethe-Bloch
expression to calculate stopping power. This code has many ap-
plications such as sputtering ion, transmission, ion's energy loss,
target damage, ion stopping in targets, ion implantation, and ion
beam therapy [9,10].

GEANT4 (GEometry ANd Tracking) is a simulation toolkit writ-
ten in Cþþ language, which permits us to make a detailed simu-
lation of the propagation of particles interacting with materials
[7,8]. This code has widespread use including the simulation of the
/ X reaction using the TALYS 1.9 simulation program.
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model and experimental data ranging from medical and nuclear
physics to high-energy astrophysics, as well as of course accelerator
design and particle physics. Geant4 includes a comprehensive set of
physics processes modeling the behavior of particles. The design of
the Geant4 visualization is generated to visualize tracking steps,
detector geometry, particle trajectories, texts (character strings),
hits, etc., to help users to execute and prepare a realistic detector
simulation [7].
Fig. 2. The calculation results by SRIM code for H ions in Cr target of 17.9 and 22.3 MeV. (a) t
energy loss, (d) the lateral spread of the ions, (e) the total displacements.

Table 1
The calculation results for particle production cross sections at 17.9 and 22.3 MeV.

Model calculations Energy (MeV) Cross Section (mb)

Alpha Deuteron Helium-3 Proton Triton

CTM þ FGM 17.9 38.01 9.12 0.00034 864.53 0.049
22.3 47.12 21.13 0.093 874.49 0.31

BSFGM 17.9 58.11 10.86 0.0013 854.95 0.051
22.3 72.45 25.39 0.21 883.09 0.52

GSM 17.9 52.38 10.75 0.00031 865.73 0.076
22.3 59.65 23.76 0.048 914.70 0.75
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3. Results and discussion

The choice of material for the reactor and the detection of events
as a result of a reaction are of great importance for the sustain-
ability of the reactor. Lightweight particles, which are known as
Helium-3, proton, neutron, alpha, triton, deuteron, formed as a
result of a nuclear reaction during an irradiation process, can be
accumulated as gas in the material and this accumulation can lead
to nuclear damage. In the present study, gas production cross sec-
tions for chromium irradiated with protons at 17.9 and 22.3 MeV
energies were calculated by using the Constant Temperature
model þ Fermi Gas model (CTM þ FGM) [19]; the Back-shifted
Fermi Gas model (BS-FGM) [20] and the Generalized Superfluid
model (GSFM) [21] in TALYS code, and were presented in Fig. 1.
Furthermore, the calculated data are given numerically in Table 1.
Level density models have a key role in accurately predicting nu-
clear cross sections [22e28].

It is clear from Fig. 1 that the cross sections vary significantly
depending on the energy of the incident particle. Although this
seems to be an expected situation, the values obtained after certain
energy have seemed with different scenarios, such as decreasing or
he projected range of H ions in the Cr target, (b) the ionization energy loss, (c) the recoil
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increasing tendency. It is evident from Table 1 that the noticeable
difference between the calculations on different level density
models is observed for alpha production cross sections. In addition,
the cross section values of proton production are significantly
higher than other particles. As seen in Fig. 1c, there is almost no
Helium-3 production up to 18 MeV. The agreement between the
different level density models of cross section results for the irra-
diation with 17.9 MeV protons is satisfactory except for alpha pro-
duction. On the other hand, there is more difference between the
results obtained for the protons at energies of 22.3 MeV.

The calculations on stopping power of target material for
charged particles are very useful in understanding the interaction
of particles with matter. The interaction of Chromium target irra-
diated with protons were calculated using SRIM code and the ob-
tained results are shown in Fig. 2. Stopping power and penetrating
distances for this interaction are also given numerically in Table 2.
The stopping power in chromium target decreases with increasing
the proton energy. It is clear from that the interactions occurring
inside the Cr targets irradiated by protons strongly depend on ion
penetration range. In addition, the electronic stopping for protons
in Cr target is about a factor of 1000 bigger than the nuclear
stopping.
Table 2
Stopping parameters for protons in Cr target up to 30 MeV energy.

Proton
Energy
(MeV)

Stopping power
(Electronic) (MeV cm2/
mg)

Stopping power
(Nuclear) (MeV cm2/mg)

Projected
Range (mm)

0.5 200.8 0.1832 2.57
0.7 167.7 0.1391 4.07
1 137.1 0.1035 6.79
1.2 123.0 0.0886 8.91
1.5 107.4 0.0736 12.50
1.7 99.31 0.0662 15.16
2 89.57 0.0576 19.53
2.25 83.00 0.0521 23.52
2.5 77.45 0.0476 27.81
2.75 72.71 0.0439 32.39
3 68.59 0.0407 37.26
3.25 64.97 0.0380 42.41
3.5 61.77 0.0357 47.84
3.75 58.91 0.0336 53.55
4 56.34 0.0318 59.52
4.5 51.89 0.0287 72.25
5 48.18 0.0262 86.02
5.5 45.02 0.0241 100.81
6 42.30 0.0223 116.60
6.5 39.92 0.0208 133.36
7 37.83 0.0195 151.09
8 34.31 0.0173 189.35
9 31.46 0.0156 231.31
10 29.09 0.0142 276.89
11 27.09 0.0131 326.01
12 25.37 0.0121 378.61
13 23.89 0.0113 434.62
14 22.59 0.0106 494.00
15 21.43 0.0099 556.69
16 20.41 0.0094 622.65
17 19.48 0.0089 691.83
18 18.65 0.0084 764.19
20 17.20 0.0077 918.25
21 16.61 0.0074 999.86
22 16.01 0.0071 1008
22.5 15.72 0.0069 1130
25 14.49 0.0063 1360
27.5 13.47 0.0058 1600
30 12.59 0.0053 1870
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We simulated for 100000 ions impinging on Chromium target at
17.9 MeV and 22.3 MeV beam energy.
Fig. 3. Simulated target geometry in GEANT4 program and generated particle shower
inside the target medium.
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Fig. 2a shows the final ion positions for 17.9 MeV (22.3 M eV)
energy. Here, the projected range of ion is 0.759 mm (1.11 mm) and
its straggling 0.018 mm (0.024 mm). The dependence of energy
losses on the projected range in Cr target which has 1.5 mm
thickness is depicted in Fig. 2b for ions and Fig. 2c for recoils. The
maximum dE/dx values for ions and recoils reach 68.05 MeV/mm
(61.74 MeV/mm) and 0.0109 MeV/mm (0.0089 MeV/mm), respec-
tively. Above the maximum, the energy deposition drops sharply.
Fig. 2d shows that the ion Lateral Projected Range (which is defined
as the average of the absolute values of the projected lateral dis-
placements from the x-axis) is 0.027 mm (0.039 mm) and its
straggling is 0.038 mm (0.055 mm). It can be seen from Fig. 2e that
the total displacements, the total vacancies and total replacement
collisions for the energy of 17.9 MeV (22.3 MeV) are 168/Ion (196/
Ion), 157/Ion (183/Ion) and 11/Ion (13/Ion), respectively. Most of the
displacements created by protons at the energy of 17.9 and
22.3 MeV occur in the region of approximately 0.759 mm and
1.11 mm, respectively. GEANT4 (v10.5.0) simulation program pro-
vides numerous physics models describing particle interactions. To
get higher accuracy of electrons, hadrons, and ion tracking results,
emstandard_opt4, is a new physics constructor, and the most
Fig. 4. a) The Number of the particle distribution of initially monoenergetic protons versus p
Cr target for 17.9 MeV and 22.3 MeV primary protons, c) The linear energy transfer for inc
deposition profile inside the Cr target material.
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accurate standard and low-energy interaction models were
selected, and 100000 particles were taken into account in the
simulation.

17.9 MeV and 22.3 MeV mono-energetic proton, in front of a
Chromium target slab which has a density of 7.18 g/cm3 and
dimension of 1.8 cm � 1.8 cm and 1.5 mm, was constructed in the
simulation program shown in Fig. 3.

The depth-dose profiles were integrated along the z-axis. The
simulation results calculated using GEANT4 code are presented in
Fig. 4. From Fig. 4a, the projected range for protons inside Cr target
for 17.9 MeV (22.3 MeV) energy is 0.77mm (1.13mm). Results show
that all incident particles are absorbed inside the target material,
are depicted in Fig. 4a. Fig. 4b depicts that the total energy
deposited in target material. Since the target material, Cr is dense
and of adequate thickness, 100% of primary protons are absorbed.
Fig. 4c presents the dependence of energy losses on the projected
range of protons in Cr target. As can be seen in Fig. 4c, the
maximum dE/dx value at 17.9 MeV (22.3 MeV) reaches 81.129MeV/
mm (66.068 MeV/mm). The plot of the exclusive energy loss along
the trace of a charged particles is known as a Bragg curve. The
particular energy loss increases roughly as 1/E as predicted by the
enetration distances in Cr target. b) Total number of events versus deposited energy in
ident protons along with the Cr target material per each event, d) Normalized energy
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Bethe formula for most of the trace of particles. The charge is
lessened due to the electron pickup and the curve diminishes
around the end of the track. Fig. 4d shows that longitudinal energy
profile as a function of x/r0 where r0 is the range of the proton
primary particle. Unlike low-energy primary protons, higher en-
ergy primary protons leave more energy and penetrate deeper.

4. Conclusion

This study was conducted on chromium material, which is an
element well known to the nuclear industry, particularly frequently
used in fusion plasma and reactor designs. First of all, a certain
thickness value has been chosen for the chromium and then irra-
diated with the proton at the energy of 17.9 MeV and 22.3 MeV.
Because the experimental cross section data at interaction of pro-
tons on Cr target are unavailable for the investigated reactions, for
this reason, theoretical comparisons were made. It has been
observed that the proton production cross section values are higher
than other particles for p þ natCr / X reaction, and Helium-3
production was not observed up to almost 18 MeV in all possible
situations. According to SRIM code calculations, the electronic en-
ergy loss of protons in Cr target is about a factor of 1000 bigger than
the nuclear energy loss. It was observed that the maximum dE/dx
values obtained by GEANT4 code are 10e15% higher than SRIM
calculations. On the other hand, the projected range values of ions
in target give very close results for GEANT4 and SRIM codes at
17.9 MeV and 22.3 MeV energies. The results obtained from both
are thought to shed light on experimental studies.
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