DOI QR코드

DOI QR Code

Multiscale simulations for estimating mechanical properties of ion irradiated 308 based on microstructural features

  • Dong-Hyeon Kwak (Department of Nuclear Engineering, Kyung Hee University) ;
  • Jae Min Sim (Department of Nuclear Engineering, Kyung Hee University) ;
  • Yoon-Suk Chang (Department of Nuclear Engineering, Kyung Hee University) ;
  • Byeong Seo Kong (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Changheui Jang (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2022.12.10
  • Accepted : 2023.05.07
  • Published : 2023.08.25

Abstract

Austenitic stainless steel welds (ASSWs) of nuclear components undergo aging-related degradations caused by high temperature and neutron radiation. Since irradiation leads to the change of material characteristics, relevant quantification is important for long-term operation, but limitations exist. Although ion irradiation is utilized to emulate neutron irradiation, its penetration depth is too shallow to measure bulk properties. In this study, a systematic approach was suggested to estimate mechanical properties of ion irradiated 308 ASSW. First of all, weld specimens were irradiated by 2 MeV proton to 1 and 10 dpa. Microstructure evolutions due to irradiation in δ-ferrite and austenite phases were characterized and micropillar compression tests were performed. In succession, dislocation density based stress-strain (S-S) relationships and quantification models of irradiation defects were adopted to define phases in finite element analyses. Resultant microscopic S-S curves were compared to verify material parameters. Finally, macroscopic behaviors were calculated by multiscale simulations using real microstructure based representative volume element (RVE). Validity of the approach was verified for the unirradiated specimens such that the estimated S-S curves and 0.2% offset yield strengths (YSs) which was 363.14 MPa were in 10% agreement with test. For irradiated specimens, the estimated YS were 917.41 MPa in 9% agreement.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20191510301140).

References

  1. A.S. Rao, Degradation of austenitic stainless steel (SS) light water reactor (LWR) core internals due to neutron irradiation, Nucl. Eng. Des. 269 (2014) 78-82.  https://doi.org/10.1016/j.nucengdes.2013.08.010
  2. N. Soneda, Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants, Woodhead Publishing Series in Energy: Number 26, Woodhead Publishing is an imprint of Elsevier, Sawston, Cambridge, UK, 2015. ISBN 978-0-85709-647-0. 
  3. C. Tian, D. Ponge, L. Christiansen, C. Kirchlechner, On the mechanical heterogeneity in dual phase steel grades: activation of slip systems and deformation of martensite in DP800, Acta Mater. 183 (2020) 274-284.  https://doi.org/10.1016/j.actamat.2019.11.002
  4. A. Reichardt, A. Lupinacci, D. Frazer, N. Bailey, H. Vo, C. Howard, Z. Jiao, A.M. Minor, P. Chou, P. Hosemann, Nanoindentation and in situ micro-compression in different dose regimes of proton beam irradiated 304 SS, J. Nucl. Mater. 486 (2017) 323-331.  https://doi.org/10.1016/j.jnucmat.2017.01.036
  5. H.-H. Jin, E.S. Ko, J.H. Kwon, S.S. Hwang, C.S. Shin, Evaluation of critical resolved shear strength and deformation mode in proton-irradiated austenitic stainless steel using micro-compression tests, J. Nucl. Mater. 470 (2016) 155-163.  https://doi.org/10.1016/j.jnucmat.2015.12.029
  6. Z. Li, W.-Y. Lo, Y. Chen, J. Pakarinen, Y. Wu, T. Allen, Y. Yang, Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel, J. Nucl. Mater. 466 (2015) 201-207.  https://doi.org/10.1016/j.jnucmat.2015.08.006
  7. Z. Li, Effect of Neutron Irradiation and Thermal Aging on Cast Austenitic Stainless Steel and Stainless Steel Weld Phase Stability, University of Florida, 2017 (Ph.D. thesis). 
  8. K. Lindgren, M. Bjurman, P. Efsing, M. Thuander, Integrated effect of thermal ageing and low flux irradiation on microstructural evolution of the ferrite of welded austenitic stainless steels, J. Nucl. Mater. 551 (2021), 152967. 
  9. X. Lin, Q. Peng, E.-H. Han, W. Ke, Z. Jiao, Irradiation-induced precipitation and inverse coarsening of G-phase in austenitic stainless steel weld metal, Mater. Char. 151 (2019) 396-403.  https://doi.org/10.1016/j.matchar.2019.03.035
  10. Y. Lu, A. Rao, Y. Chen, Y. Yang, Evolution of d ferrite in a CF3 cast stainless steel upon neutron irradiation to 3, 5, 10, 20, and 40 dpa, J. Nucl. Mater. 549 (2021). 
  11. T.G. Lach, W.E. Frazier, J. Wang, A. Devaraj, T.S. Byun, Precipitation-site competition in duplex stainless steels: Cu cluster vs spinodal decomposition interfaces as nucleation sites during thermal aging, Acta Mater. 196 (2020) 456-469.  https://doi.org/10.1016/j.actamat.2020.05.017
  12. S. Chen, Y. Miyahara, A. Nomoto, K. Nishida, Effects of thermal aging and low-fluence neutron irradiation on the mechanical property and microstructure of ferrite in cast austenitic stainless steels, Acta Mater. 179 (2019) 61-69.  https://doi.org/10.1016/j.actamat.2019.08.029
  13. G. Monnet, Multiscale modeling of irradiation hardening: Application to important nuclear materials, J. Nucl. Mater. 508 (2018) 609-627.  https://doi.org/10.1016/j.jnucmat.2018.06.020
  14. G. Monnet, C. Mai, Prediction of irradiation hardening in austenitic stainless steels: analytical and crystal plasticity studies, J. Nucl. Mater. 518 (2019) 316-325.  https://doi.org/10.1016/j.jnucmat.2019.03.001
  15. G. Monnet, L. Vincent, L. Gel ebart, Multiscale modeling of crystal plasticity reactor pressure vessel steels: prediction of irradiation hardening, J. Nucl. Mater. 514 (2019) 128-138.  https://doi.org/10.1016/j.jnucmat.2018.11.028
  16. R. Badyka, G. Monnet, S. Saillet, C. Domain, C. Pareige, Quantification of hardening contribution of G-phase precipitation and spinodal decomposition in aged duplex stainless steel: APT analysis and micro-hardness measurement, J. Nucl. Mater. 514 (2019) 266-275.  https://doi.org/10.1016/j.jnucmat.2018.12.002
  17. S.K. Basantia, P.K. Prusty, D. Das, N. Khutia, Micro-scale simulation of nanoindentation characteristics in dual-phase steel, Mater. Today Proc. 33 (2020) 5055-5060.  https://doi.org/10.1016/j.matpr.2020.02.843
  18. J. Nie, Y. Liu, Q. Xie, Z. Liu, Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model, Nucl. Eng. Technol. 51 (2019) 501-509.  https://doi.org/10.1016/j.net.2018.10.020
  19. J. Nie, P. Lin, Y. Liu, H. Zhang, Xin Wang, Simulation of the irradiation effect on hardness of Chinese HTGR A508-3 steels with CPFEM, Nucl. Eng. Technol. 51 (2019) 1970-1977.  https://doi.org/10.1016/j.net.2019.06.015
  20. H. Hosseini-Toudeshky, B. Anbarlooie, J. Kadkhodapour, Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding, Mater. Des. 68 (2015) 167-176.  https://doi.org/10.1016/j.matdes.2014.12.013
  21. A. Cruzado, B. Gan, M. Jimenez, D. Barba, K. Ostolaza, A. Linaza, J.M. Molina- Aldareguia, J. Llorca, J. Segurado, Multiscale modeling of the mechanical behavior of IN718 superalloy based on micropillar compression and computational homogenization, Acta Mater. 98 (2015) 242-253.  https://doi.org/10.1016/j.actamat.2015.07.006
  22. B.S. Kong, J.H. Shin, C. Jang, Y.-E. Na, D. Jang, H.J. Lee, J.-S. Yang, Effect of proton irradiation on δ-ferrite in the thermally aged austenitic stainless steel weld: precipitation of G-phase and additional hardening, J. Nucl. Mater. 544 (2021), 152656. 
  23. G. Was, et al., Emulation of neutron irradiation effects with proton: validation of principle, J. Nucl. Mater. 300 (2002) 198-216.  https://doi.org/10.1016/S0022-3115(01)00751-6
  24. E.R. Reese, N. Almirall, T. Yamamoto, S. Tumey, G. Robert Odette, E.A. Marquis, Dose rate dependence of Cr precipitation in an ion-irradiated Fe-18Cr alloy, Scripta Mater. 146 (2018) 213-217.  https://doi.org/10.1016/j.scriptamat.2017.11.040
  25. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, Pergamon, New York, 1985. ISBN 008021603X. 
  26. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. B. 310 (2013) 75-80.  https://doi.org/10.1016/j.nimb.2013.05.008
  27. J.H. Shin, et al., Dynamic evolution of nanosized NbC precipitates in austenite matrix during deformation and its contribution to strengthening, Mater. Sci. Eng., A 806 (2021), 140816. 
  28. H.J. Eom, et al., Dissolution of nanosized NbC precipitates in austenite matrix during elastic deformation - deleterious effect of high number density, Mater. Sci. Eng., A 833 (2022), 142506. 
  29. E. Paccou, B. Tanguy, M. Legros, Micropillar compression study of Fe-irradiated 304L steel, Scripta Mater. 172 (2019) 56-60.  https://doi.org/10.1016/j.scriptamat.2019.07.007
  30. J. Zhou, J. Odqvist, M. Thuvander, P. Hedstrom, Quantitative evaluation of spinodal decomposition in Fe-Cr by atom probe tomography and radial distribution function analysis, Microsc. Microanal. 19 (2013) 665-675.  https://doi.org/10.1017/S1431927613000470
  31. J.F. Nie, B.C. Muddle, Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates, Acta Mater. 56 (2008) 3490-3501.  https://doi.org/10.1016/j.actamat.2008.03.028
  32. D.J. Edwards, E.P. Simonen, S.M. Bruemmer, Evolution of fine-scale defects in stainless steels neutron-irradiated at 275 ℃, J. Nucl. Mater. 317 (2003) 13-31.  https://doi.org/10.1016/S0022-3115(03)00002-3
  33. A. Etienne, M. Hernandez-Mayoral, C. Genevois, B. Radiquet, P. Pareige, Dislocation loop evolution under ion irradiation in austenitic stainless steels, J. Nucl. Mater. 400 (2010) 56-63.  https://doi.org/10.1016/j.jnucmat.2010.02.009
  34. H.-H. Jin, S.S. Hwang, M.J. Choi, G.-G. Lee, J.H. Kwon, Proton irradiation for radiation-induced changes in microstructures and mechanical properties of austenitic stainless steel, J. Nucl. Mater. 513 (2019) 271-281.  https://doi.org/10.1016/j.jnucmat.2018.11.017
  35. G.S. Was, J.T. Busby, T. Allen, E.A. Kenik, A. Jenssen, S.M. Bruemmer, J. Gam, A.D. Edwards, P.M. Scott, P.L. Andresen, Emulation of neutron irradiation effects with protons: validation of principle, J. Nucl. Mater. 300 (2002) 198-216.  https://doi.org/10.1016/S0022-3115(01)00751-6
  36. J. Bouquerel, K. Verbeken, B.C. De Cooman, Microstructure-based model for the static mechanical behaviour of multiphase steels, Acta Mater. 54 (6) (2006) 1443-1456.  https://doi.org/10.1016/j.actamat.2005.10.059
  37. T.M. Belgasam, H.M. Zbib, Multiscale material modeling and simulation of the mechanical behavior of dual phase steels under different strain rates: parametric study and optimization, J. Eng. Mater. Technol. Trans. ASME. 140 (3) (2018) 19-23. 
  38. L. Tan, J.T. Busby, Formulating the strength factor α for improved predictability of radiation hardening, J. Nucl. Mater. 465 (2015) 724-730.  https://doi.org/10.1016/j.jnucmat.2015.07.009
  39. P. Zhou, Z.Y. Liang, R.D. Liu, M.X. Huang, Evolution of dislocations and twins in a strong and ductile nanotwinned steel, Acta Mater. 111 (2016) 96-107.  https://doi.org/10.1016/j.actamat.2016.03.057
  40. Dassault Systems, ABAQUS User's Manual, 2018. 
  41. P. Chen, H. Ghassemi-Armaki, S. Kumar, A. Bower, S. Bhat, S. Sadagopan, Microscale-calibrated modeling of the deformation response of dual-phase steels, Acta Mater. 65 (2014) 133-149.  https://doi.org/10.1016/j.actamat.2013.11.036
  42. H.J. Lee, et al., Evaluation of thermal aging of d-ferrite in austenitic stainless steel weld using nanopillar compression test, Scripta Mater. 155 (2018) 32-36.  https://doi.org/10.1016/j.scriptamat.2018.06.016
  43. Y.-H. Hsieh, et al., In-situ transmission electron microscopy investigation of the deformation behavior of spinodal nanostructured δ-ferrite in a duplex stainless steel, Scripta Mater. 125 (2016) 44-48.  https://doi.org/10.1016/j.scriptamat.2016.06.047
  44. C. Shin, H.-H. Jin, H. Sung, D.-J. Kim, Y.S. Choi, K. Oh, Evaluation of irradiation effects on fracture strength of silicon carbide using micropillar compression tests, Exp. Mech. 53 (2013) 687-697.  https://doi.org/10.1007/s11340-012-9678-1
  45. S. Sodjit, V. Uthaisangsuk, Microstructure based prediction of strain hardening behavior of dual phase steels, Mater. Des. 41 (2012) 370-379.  https://doi.org/10.1016/j.matdes.2012.05.010
  46. A. Ramazani, K. Mukherjee, U. Prahl, W. Bleck, Modelling the effect of microstructural banding on the flow curve behaviour of dual-phase (DP) steels, Comput, Mater. Sci. 52 (2012) 46-54.  https://doi.org/10.1016/j.commatsci.2011.05.041
  47. C.U. Jeong, Y.-U. Heo, J.Y. Choi, W. Woo, S.-H. Choi, A study on the micromechanical behaviors of duplex stainless steel under uniaxial tension using ex-situ experimentation and the crystal plasticity finite element method, Int. J. Plast. 75 (2015) 22-38.  https://doi.org/10.1016/j.ijplas.2015.07.005
  48. J. Kadkhodapour, A. Butz, S. Ziaei-Rad, S. Schmauder, A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model, Int. J. Plast. 27 (2011) 1103-1125.  https://doi.org/10.1016/j.ijplas.2010.12.001
  49. S.K. Ravi, M. Seefeldt, A. Van Bael, J. Gawad, D. Roose, Multi-scale material modelling to predict the material anisotropy of multi-phase steels, Comput, Mater. Sci. 160 (2019) 382-396.  https://doi.org/10.1016/j.commatsci.2019.01.028
  50. M.A. Groeber, M.A. Jackson, DREAM.3D: a digital representation environment for the analysis of microstructure in 3D, Integr. Mater. Manuf. Innov. 3 (2014) 56-72.  https://doi.org/10.1186/2193-9772-3-5
  51. L. Qi, W. Tian, J. Zhou, Numerical evaluation of effective elastic properties of composites reinforced by spatially randomly distributed short fibers with certain aspect ratio, Compos. Struct. 131 (2015) 843-851.  https://doi.org/10.1016/j.compstruct.2015.06.045
  52. Y. Hou, Modelling of Plasticity and Fracture Behaviors of Dual-phase Steel, Universite de Technologie de Compiegne, 2016 (Ph.D. thesis). 
  53. M. Amirmaleki, Microstructural Analysis and Micromechanical Modeling of Flow Behavior of Dual Phase Steels Using a Representative Volume Element Method, University of Windsor, 2014 (the degree of master thesis). 
  54. K. Amberge, Materials Reliability Program: PWR Internals Age-Related Material Properties, Degradation Mechanisms, Models, and Basis Data-State of Knowledge (MRP-211, Revision 1), 2017. Palo Alto, California.