• Title/Summary/Keyword: protein tissues

Search Result 1,564, Processing Time 0.028 seconds

BIOLOGICAL HUMAN MONITORING OF CARCINOGEN EXPOSURE: A NEW STRATEGY IN CANCER PREVENTION

  • Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.61-61
    • /
    • 1990
  • Human exposure to environmental carcinogens can be detected by a number of methods including immunoassay, $^{32}P$-postlabeling assay, and fluorescence technique. These assays have been applied to measure biological markers of carcinogen-adducts formed with macromolecules such as DNA, RNA and protein. In an attempt to investigate causal relation ships between carcinogen exposure and tumor formation, specific carcinogen-adducts have been quantitated from human tissues and body fluids of cancer patients, occupational workers heavily exposed to certain carcinogens, smokers and controls. Carcinogens studied for biological human monitoring include benzo(a)pyrene, aflatoxin B1, UV light, ethylene oxide, 8-methoxypsoralen, 4-aminobiphenyl, vinyl chloride, N-nitrosamine, cisplatin and other chemotherapeutic agents. Relevance of human monitoring for cancer research, progress in this field, methods to detect carcinogen-adducts are reviewed here. It is hoped that these approaches will be used for the risk assessment of carcinogen exposure, cancer etiology study and cancer prevention in humans.

Saccharomyces cerevisiae를 이용한 재조합 인간 훼리틴 발현 연구

  • Gang, Hwan-Gu;Lee, Chung-Yeol;Kim, Won-Cheol;Yun, Ji-Seon;Park, Hyeong-Su;Lee, Ji-Won;Jeong, Bong-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.438-440
    • /
    • 2001
  • Ferritin an iron-storage protein. is found in bacteria and some animal tissues such as liver, spleen and bone marrow. It is more effective and causes less side reactions than traditional ferrous sulfate, which has been used primarily to treat iron deficiency in pregnancy anemia. Currently, the ferritin extracted from bovine and equine spleens are sold as a commercial product. Its markets are several hundreds of million US dollars. However, because of recent warnings against the viral diseases of animal origins such as mad cow disease, a safer ferritin is sought after. In this study, a production process for human ferritin was successfully developed. The amount of its produced in yeast is high enough to be economically viable.

  • PDF

Hydrogen Peroxide Mediates Brazilin-induced Glucose Transport in Adipocytes

  • Khil, Lee-Yong;Moon, Chang-Kiu
    • Biomolecules & Therapeutics
    • /
    • v.12 no.4
    • /
    • pp.228-234
    • /
    • 2004
  • Brazilin shows hypoglycemic effect in diabetic animals through enhancement of glucose metabolisms in insulin responsive tissues. One of the major mechanisms of brazilin to enhance glucose metabolism is stimulation of glucose transport in adipocytes. In this study, the essential molecular moiety of brazilin for the stimulation of glucose transport was investigated. We found that brazilin undergoes a structural change in physiological buffer and produces hydrogen peroxide. Methylation of hydroxyl group of brazilin or addition of catalase along with brazilin resulted in the complete inhibition of brazilin-induced glucose transport in adipocytes. Because hydrogen peroxide increases glucose transport by inhibition of phosphatases, we examined the effect of brazilin on phosphatase activity. Brazilin inhibited phosphatases in a wide range of activity, and protein phosphatase 1 and 2A were also inhibited. These results suggest that the production of hydrogen peroxide by oxidation of catechol hydroxyl group of brazilin mediates glucose transport through inhibition of phosphatases which otherwise decrease glucose transport in adipocytes.

A STUDY OF COMPARATIVE GROWTH DYNAMICS AND TOTAL PROTEINS BETWEEN GRANULATION TISSUE FIBROBLASTS AND NORMAL FIBROBLASTS (만성 염증시 치주 결체조직 세포 성장 및 총 단백질 변화에 관한 연구)

  • Lim, Jeong-Su;Oh, Kwi-Ok;Kim, Hyung-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.135-143
    • /
    • 1993
  • The investigation was undertaken to determin the altered function and structure of granulation tissue fibroblasts. Human granulation-tissue fibroblasts were cultured from periodontal chronic inflammatory lesions (SBI index : above 3) and compared with healthy gingival connective tissues fibroblasts a control(SBI index : below 1). Granulation tissue fibroblasts proliferated with a slower growth rate and exhibited larger cell size than control cells. Total protein profile of granulation tissue fibroblasts was almost identical to that of control cells with some exception. These results support tha theory that granulation tissue fibroblasts represent a distinct phenotype of fibrotic cells.

  • PDF

Proteomic Approach Analysis of Mammary Membrane Proteins Expression Profiles in Holstein Cows

  • Yang, Yong-xin;Cao, Sui-zhong;Zhang, Yong;Zhao, Xing-xu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.885-892
    • /
    • 2009
  • To investigate host defense mechanisms for protecting the mammary gland from mastitis infection, the membrane fraction of mammary tissues from Holstein cows was purified by differential velocity centrifugation, and then the sodium dodecyl sulfate-polyacrylamid gel electrophoresis (SDS-PAGE) separated proteins were identified by ion trap mass spectrometer equipped with a Surveyor high performance liquid chromatography (HPLC) system. A total of 183 proteins were identified. Bioinformatics software was applied to analyse physicochemical characteristics of the identified proteins and to predict biochemical function. These data may provide valuable information to investigate the mechanisms of mammary gland milk secretion and infectious disease, and enable a clear identification of proteins and potential protein targets for therapies.

Microbial Biosensors for Environmental and Food industrial Applications (환경오염과 식품공업 측정용 미생물 바이오센서)

  • 김의락
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.213-227
    • /
    • 2002
  • To date, the majority of biosensor technologies use binding components such as enzymes antibodies, nucleic acids and protein ligands. In contrast, the goal underlying the use of cells and tissues of animals and plants for a sensor system is to obtain systems capable of extracting information based on the biological activity, mechanisms of action and consequences of exposure to a chemical or biological agent of interest. These systems enable the interrogation of more complex biological response and offer the potential to gather higher information content from measuring physiologic and metabolic response. In these articles, same of the recent trends and applications of microbial biosensors in environmental monitoring and for use in food and fermentations have been reviewed. This endeavor presents many technological challenges to fabricate new microbial biosensors for other scientific field.

Structure and Function of the Developmental Signaling Molecule Hedgehog

  • Leahy, Daniel J.
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.103-111
    • /
    • 1999
  • Hh proteins represent a new signaling paradigm in metazoan development. In species ranging from fruit flies to humans, Hh proteins mediate multiple processes vital to appropriate pattern formation in the developing embryo. Hh proteins undergo an autoprocessing event in which the full-length protein is cleaved into N-terminal and C-terminal domains (Hh-N and Hh-C, respectively), and a cholesterol moiety becomes covalently attached to Hh-N. All known signaling activities of Hh proteins are mediated by Hh-N while both the cleavage and cholesterol transfer reactions are mediated by Hh-C. The cholesterol attached to Hh-N is required to retrict the range of Hh signaling and may be involved in ensuring appropriate reception of the Hh signal in target tissues. Disruptions of Hh signaling pathways lead to severe developmental defects in newborns and cancers in adults. While studies of Hh proteins have yielded a wealth of new insight into the molecular mechanisms of metazoan development, many outstanding questions concerning Hh signaling mechanisms ensure that unraveling the secrets of this molecule will keep scientists well entertained for the foreseeable future.

  • PDF

Heat shock transcription factors and sensory placode development

  • Nakai, Akira
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.631-635
    • /
    • 2009
  • The heat shock transcription factor (HSF) family consists of at least three members in mammals and regulates expression of heat shock proteins in response to heat shock and proteotoxic stresses. Especially, HSF1 is indispensable for this response. Members of this family are also involved in development of some tissues such as the brain and reproductive organs. However, we did not know the molecular mechanisms that regulate developmental processes. Involvement of HSFs in the sensory development was implicated by the finding that human hereditary cataract is associated with mutations of the HSF4 gene. Analysis of gene-disrupted mice showed that HSF4 and HSF1 are required for the lens and the olfactory epithelium, respectively. Furthermore, a common molecular mechanism that regulates developmental processes was revealed by analyzing roles of HSFs in the two developmentally-related organs.

GPR78 promotes lung cancer cell migration and metastasis by activation of Gαq-Rho GTPase pathway

  • Dong, Dan-Dan;Zhou, Hui;Li, Gao
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.623-628
    • /
    • 2016
  • GPR78 is an orphan G-protein coupled receptor (GPCR) that is predominantly expressed in human brain tissues. Currently, the function of GPR78 is unknown. This study revealed that GPR78 was expressed in lung cancer cells and functioned as a novel regulator of lung cancer cell migration and metastasis. We found that knockdown of GPR78 in lung cancer cells suppressed cell migration. Moreover, GPR78 modulated the formation of actin stress fibers in A549 cells, in a RhoA- and Rac1-dependent manner. At the molecular level, GPR78 regulated cell motility through the activation of $G{\alpha}q$-RhoA/Rac1 pathway. We further demonstrated that in vivo, the knockdown of GPR78 inhibited lung cancer cell metastasis. These findings suggest that GPR78 is a novel regulator for lung cancer metastasis and may serve as a potential drug target against metastatic human lung cancer.

Isolation of High Quality RNA from Seeds of the Mungbean (Vigna radiata) (녹두 종자의 RNA 분리 방법)

  • Kim, Kyeong-Im;Ku, Ja-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.274-276
    • /
    • 2006
  • Mungbean (Vigna radiata) is a legume to East Asia that has great potential for development as traditional food and industrial crop. It produces both protein and starch rich grain. The low variability of the existing gene pool of the mungbean limits the use of conventional plant breeding to address this problem. For this purpose, an efficient means of RNA isolation from mungbean seed tissues was developed. The quality of RNA obtained by this method was sufficient for use in RT-PCR and RNA analysis.