• Title/Summary/Keyword: propulsion test facility

Search Result 227, Processing Time 0.024 seconds

Fundamental design consideration for optimum performance in altitude test cell facility (고공시험설비의 전체 사양을 결정하는 시험부를 중심으로 설비개발시의 주요 고려사항)

  • Choi, Kyoung-Ho;Lee, Jung-Hyung;Owino, George;Lee, Dae-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.411-415
    • /
    • 2008
  • This paper presents on design factor considered in an altitude test cell facility to determine the best sizing to optimize exhaust diffuser pressure recovery and the exact cooling load required to be supplied under transient operation. Engine simulation was performed to analyse the exhaust gas temperature, exit mass flow rate, specific fuel consumption and exhaust velocity helpful in determining secondary mass air flow and the mixed air temperature entering the ejector. based on this, the amount of cooling load was deduced. It was found that improved pressure recovery reduces operational cost(air supply facility, cooling water).

  • PDF

Conceptual Design of KSLV-II 3rd Stage Engine Test Facility (한국형발사체 3단 엔진 연소시험설비 개념설계)

  • Kim, Seung-Han;Chung, Yong-Gap;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.484-488
    • /
    • 2012
  • Korea Aerospace Research Institute (KARI) performed the conceptual design of rocket engine test facility for the development and qualification of the 3rd stage liquid rocket engine for KSLV-II. The 3rd stage rocket engine test facility, which are to be constructed at Naro Space Center, will supply propellants and high-pressure gases to engine for firing test at ground and altitude conditions. The altitude test condition is obtained using a supersonic diffuser operated by the self-ejecting jet from the liquid rocket engine.

  • PDF

Development of the Scramjet engine Test Facility(SeTF) in Korea Aerospace Research Institute (한국항공우주연구원 스크램제트 엔진 시험설비의 개발)

  • Lee, Yang-Ji;Kang, Sang-Hun;Oh, Joong-Hwan;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.69-78
    • /
    • 2010
  • Korea Aerospace Research Institute started on design and development of a hypersonic air-breathing engine test facility from 2000 and completed the test facility installation in July 2009. This facility, designated as Scramjet engine test facility(SeTF), is a blow-down type high enthalpy wind tunnel which has a pressurized air supply system, air heater system, free-jet test chamber, fuel supply system, facility control/measurement system and exhaust system. In this paper, details of the specifications, and configuration of the SeTF are described. For verifying characteristics of the SeTF, wind tunnel tests are now on progress and some of the data are also described.

Design of High-Frequency Data Acquisition System for Combustor Combustion Test Facility (연소기 연소시험설비 고주파 계측 시스템 설계)

  • Ahn, Kyu-Bok;Kang, Dong-Hyuk;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.461-464
    • /
    • 2012
  • The high-frequency data acquisition system of the rocket engine test facility has been updated to perform hot-firing tests of 7 ton-class liquid rocket engine combustion chambers which will be used for the third stage of the Korea space launch vehicle II. The paper deals with the design of the updated high-frequency data acquisition system and explains its main functions.

  • PDF

Hot-Fire Test Facility for Medium-scale Monopropellant Thruster Evaluation (중대형 단일추진제 추력기 성능평가를 위한 진공연소시험설비 개발)

  • Kim, In-Tae;Lee, Jun-Hui;Lee, Jae-Won;Lee, Won-Bok;Kim, Su-Kyum;Chae, Jong-Won;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.336-339
    • /
    • 2011
  • Hot-fire test facility is one of the most important infrastructure for thruster development and evaluation. During the past three years, Korea Aerospace Research Institute (KARI) and Hanwha Corporation have successfully performed the construction of hot-fire test facility for medium-scale monopellant thruster to the maximum 200N thrust level. In general, thruster hot-firing test should be performed in vacuum conditions to simulate space environment. The hot-fire test facility is divided into three subsystems, vacuum system, propellant supply system and data measurement & control system. The goal of this facility is to extend the capability from small thruster for satellite mission to medium-scale thruster for launch vehicle and lunar mission. In this paper, the progress and overview for thruster hot-fire test facility was introduced and test results were also presented.

  • PDF

Integrated Test for Propulsion System of Space Launch Vehicle (우주 발사체 추진기관 종합 시험)

  • Cho, Sang-Yeon;Kim, Sang-Heon;Bershadesky, V.;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.797-800
    • /
    • 2011
  • For the space launch vehicle, propulsion system is the most important subsystem among others. For the evaluation of development level for rocket engine, integrated system test performed in appropriate facility is needed. In this study, test article and major parameters for certifying the propulsion system of launch vehicle were reviewed.

  • PDF

Development of a Direct-Connected Supersonic Combustor Test Facility (직결형 초음속 연소기 시험 설비 개발)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Hyung-Mo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.290-293
    • /
    • 2017
  • A direct-connected, continuous type combustion test facility was developed to test a supersonic combustor model used in scramjet engines. The facility requirements were determined by assuming the flight speed of Mach 5, yielding the combustor inlet flow speed of Mach 2. Also the cross-section of the supersonic combustor under test was assumed as $32mm{\times}70mm$. As a result, the facility was designed to have the flow total pressure of 548 kPaA, total temperature of 1,320 K, and flow rate of 0.776 kg/s. The facility consists of a turbo type air compressor, electric air heater, vitiation air heater and a two dimensional facility nozzle to accelerate the flow to Mach 2. Also, an oxygen supply system was added to compensate the vitiation. The exhaust de-pressurization system is not added. Designed pressure, temperature, and flow rate were verified through the test operation of the facility.

  • PDF

Construction and Validation Test of Turbopump Real-propellant Test Facility (터보펌프 실매질 시험설비 구축 및 인증시험)

  • Kim, Jin-Sun;Han, Yeoung-Min;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.85-93
    • /
    • 2015
  • Liquid rocket engines of KSLV-II employ a turbopump feed system for propellants. A turbopump real-propellant test facility based on liquid oxygen and kerosene has been constructed for the experimental verification of the turbopump performance using the real media of propellants(i.e., LOX/Kerosene). The verification tests of sub-systems were performed such as LOX/kerosene feed system and alcohol burner system. Finally, the performance of the whole system was executed and verified through a sets of validation tests with the development model of the KSLV-II turbopumps. It has been confirmed that the test facility satisfies the operating conditions and time of the turbopump at the design and off-design performance test using real-propellant.

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계)

  • 이양지;차봉준;양수석;김형진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.13-19
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blowdown type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm$\times$200mm).

  • PDF

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계기법 연구)

  • 이양지;차봉준;양수석;김형진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blow down type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm${\times}$200mm).