• 제목/요약/키워드: prime M-ideal

검색결과 65건 처리시간 0.026초

ON WEAKLY (m, n)-PRIME IDEALS OF COMMUTATIVE RINGS

  • Hani A. Khashan;Ece Yetkin Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • 제61권3호
    • /
    • pp.717-734
    • /
    • 2024
  • Let R be a commutative ring with identity and m, n be positive integers. In this paper, we introduce the class of weakly (m, n)-prime ideals generalizing (m, n)-prime and weakly (m, n)-closed ideals. A proper ideal I of R is called weakly (m, n)-prime if for a, b ∈ R, 0 ≠ amb ∈ I implies either an ∈ I or b ∈ I. We justify several properties and characterizations of weakly (m, n)-prime ideals with many supporting examples. Furthermore, we investigate weakly (m, n)-prime ideals under various contexts of constructions such as direct products, localizations and homomorphic images. Finally, we discuss the behaviour of this class of ideals in idealization and amalgamated rings.

1-(2-) Prime Ideals in Semirings

  • Nandakumar, Pandarinathan
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.117-122
    • /
    • 2010
  • In this paper, we introduce the concepts of 1-prime ideals and 2-prime ideals in semirings. We have also introduced $m_1$-system and $m_2$-system in semiring. We have shown that if Q is an ideal in the semiring R and if M is an $m_2$-system of R such that $\overline{Q}{\bigcap}M={\emptyset}$ then there exists as 2-prime ideal P of R such that Q $\subseteq$ P with $P{\bigcap}M={\emptyset}$.

WEAKLY PRIME LEFT IDEALS IN NEAR-SUBTRACTION SEMIGROUPS

  • Dheena, P.;Kumar, G. Satheesh
    • Communications of the Korean Mathematical Society
    • /
    • 제23권3호
    • /
    • pp.325-331
    • /
    • 2008
  • In this paper we introduce the notion of weakly prime left ideals in near-subtraction semigroups. Equivalent conditions for a left ideal to be weakly prime are obtained. We have also shown that if (M, L) is a weak $m^*$-system and if P is a left ideal which is maximal with respect to containing L and not meeting M, then P is weakly prime.

ON FUZZY k−IDEALS, k−FUZZY IDEALS AND FUZZY 2−PRIME IDEALS IN Γ−SEMIRINGS

  • Murali Krishna Rao, M.;Venkateswarlu, B.
    • Journal of applied mathematics & informatics
    • /
    • 제34권5_6호
    • /
    • pp.405-419
    • /
    • 2016
  • The notion of Γ-semiring was introduced by M. Murali Krishna Rao [8] as a generalization of Γ-ring as well as of semiring. In this paper fuzzy k-ideals, k-fuzzy ideals and fuzzy-2-prime ideals in Γ-semirings have been introduced and study the properties related to them. Let μ be a fuzzy k-ideal of Γ-semiring M with |Im(μ)| = 2 and μ(0) = 1. Then we establish that Mμ is a 2-prime ideal of Γ-semiring M if and only if μ is a fuzzy prime ideal of Γ-semiring M.

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • 제20권1호
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • 제59권6호
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

ON ϕ-PSEUDO ALMOST VALUATION RINGS

  • Esmaeelnezhad, Afsaneh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • 제52권3호
    • /
    • pp.935-946
    • /
    • 2015
  • The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be ${\phi}$-ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ${\phi}$ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ${\phi}$-ring R is said to be a ${\phi}$-pseudo-strongly prime ideal if, whenever $x,y{\in}R_{Nil(R)}$ and $(xy){\phi}(P){\subseteq}{\phi}(P)$, then there exists an integer $m{\geqslant}1$ such that either $x^m{\in}{\phi}(R)$ or $y^m{\phi}(P){\subseteq}{\phi}(P)$. If each prime ideal of R is a ${\phi}$-pseudo strongly prime ideal, then we say that R is a ${\phi}$-pseudo-almost valuation ring (${\phi}$-PAVR). Among the properties of ${\phi}$-PAVRs, we show that a quasilocal ${\phi}$-ring R with regular maximal ideal M is a ${\phi}$-PAVR if and only if V = (M : M) is a ${\phi}$-almost chained ring with maximal ideal $\sqrt{MV}$. We also investigate the overrings of a ${\phi}$-PAVR.

M-SYSTEM AND N-SYSTEM IN PO-SEMIGROUPS

  • Lee, Sang-Keun
    • East Asian mathematical journal
    • /
    • 제19권2호
    • /
    • pp.233-240
    • /
    • 2003
  • Xie and Wu introduced an m-system in a po-semigroup. Kehayopulu gave characterizations of weakly prime ideals of po-semigroups and Lee and Kwon add two characterizations for weakly prime ideals. In this paper, we give a characterization of weakly prime ideals and a characterization of weakly semi-prime ideals in po-semigroups using m-system and n-system, respectively

  • PDF

One-sided Prime Ideals in Semirings

  • Shabir, Muhammad;Iqbal, Muhammad Sohail
    • Kyungpook Mathematical Journal
    • /
    • 제47권4호
    • /
    • pp.473-480
    • /
    • 2007
  • In this paper we define prime right ideals of semirings and prove that if every right ideal of a semiring R is prime then R is weakly regular. We also prove that if the set of right ideals of R is totally ordered then every right ideal of R is prime if and only if R is right weakly regular. Moreover in this paper we also define prime subsemimodule (generalizing the concept of prime right ideals) of an R-semimodule. We prove that if a subsemimodule K of an R-semimodule M is prime then $A_K(M)$ is also a prime ideal of R.

  • PDF