• Title/Summary/Keyword: primal ideal

Search Result 12, Processing Time 0.024 seconds

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

Strongly Prime Ideals and Primal Ideals in Posets

  • John, Catherine Grace;Elavarasan, Balasubramanian
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.727-735
    • /
    • 2016
  • In this paper, we study and establish some interesting results of ideals in a poset. It is shown that for a nonzero ideal I of a poset P, there are at most two strongly prime ideals of P that are minimal over I. Also, we study the notion of primal ideals in a poset and the relationship among the primal ideals and strongly prime ideals is considered.

A NOTE ON MINIMAL PRIME IDEALS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1291
    • /
    • 2017
  • Let R be a strongly 2-primal ring and I a proper ideal of R. Then there are only finitely many prime ideals minimal over I if and only if for every prime ideal P minimal over I, the ideal $P/{\sqrt{I}}$ of $R/{\sqrt{I}}$ is finitely generated if and only if the ring $R/{\sqrt{I}}$ satisfies the ACC on right annihilators. This result extends "D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13-14." to large classes of noncommutative rings. It is also shown that, a 2-primal ring R only has finitely many minimal prime ideals if each minimal prime ideal of R is finitely generated. Examples are provided to illustrate our results.

ZERO-DIVISOR GRAPHS WITH RESPECT TO PRIMAL AND WEAKLY PRIMAL IDEALS

  • Atani, Shahabaddin Ebrahimi;Darani, Ahamd Yousefian
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.313-325
    • /
    • 2009
  • We consider zero-divisor graphs with respect to primal, nonprimal, weakly prime and weakly primal ideals of a commutative ring R with non-zero identity. We investigate the interplay between the ringtheoretic properties of R and the graph-theoretic properties of ${\Gamma}_I(R)$ for some ideal I of R. Also we show that the zero-divisor graph with respect to primal ideals commutes by localization.

AN IDEAL-BASED ZERO-DIVISOR GRAPH OF 2-PRIMAL NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1051-1060
    • /
    • 2009
  • In this paper, we give topological properties of collection of prime ideals in 2-primal near-rings. We show that Spec(N), the spectrum of prime ideals, is a compact space, and Max(N), the maximal ideals of N, forms a compact $T_1$-subspace. We also study the zero-divisor graph $\Gamma_I$(R) with respect to the completely semiprime ideal I of N. We show that ${\Gamma}_{\mathbb{P}}$ (R), where $\mathbb{P}$ is a prime radical of N, is a connected graph with diameter less than or equal to 3. We characterize all cycles in the graph ${\Gamma}_{\mathbb{P}}$ (R).

ON WEAK II-REGULARITY AND THE SIMPLICITY OF PRIME FACTOR RINGS

  • Kim, Jin-Yong;Jin, Hai-Lan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.151-156
    • /
    • 2007
  • A connection between weak ${\pi}-regularity$ and the condition every prime ideal is maximal will be investigated. We prove that a certain 2-primal ring R is weakly ${\pi}-regular$ if and only if every prime ideal is maximal. This result extends several known results nontrivially. Moreover a characterization of minimal prime ideals is also considered.

MCCOY CONDITION ON IDEALS OF COEFFICIENTS

  • Cheon, Jeoung Soo;Huh, Chan;Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1887-1903
    • /
    • 2013
  • We continue the study of McCoy condition to analyze zero-dividing polynomials for the constant annihilators in the ideals generated by the coefficients. In the process we introduce the concept of ideal-${\pi}$-McCoy rings, extending known results related to McCoy condition. It is shown that the class of ideal-${\pi}$-McCoy rings contains both strongly McCoy rings whose non-regular polynomials are nilpotent and 2-primal rings. We also investigate relations between the ideal-${\pi}$-McCoy property and other standard ring theoretic properties. Moreover we extend the class of ideal-${\pi}$-McCoy rings by examining various sorts of ordinary ring extensions.

On the Relationship between Zero-sums and Zero-divisors of Semirings

  • Hetzel, Andrew J.;Lufi, Rebeca V. Lewis
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.2
    • /
    • pp.221-233
    • /
    • 2009
  • In this article, we generalize a well-known result of Hebisch and Weinert that states that a finite semidomain is either zerosumfree or a ring. Specifically, we show that the class of commutative semirings S such that S has nonzero characteristic and every zero-divisor of S is nilpotent can be partitioned into zerosumfree semirings and rings. In addition, we demonstrate that if S is a finite commutative semiring such that the set of zero-divisors of S forms a subtractive ideal of S, then either every zero-sum of S is nilpotent or S must be a ring. An example is given to establish the existence of semirings in this latter category with both nontrivial zero-sums and zero-divisors that are not nilpotent.

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.

ON 𝜙-SCHREIER RINGS

  • Darani, Ahmad Yousefian;Rahmatinia, Mahdi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1057-1075
    • /
    • 2016
  • Let R be a ring in which Nil(R) is a divided prime ideal of R. Then, for a suitable property X of integral domains, we can define a ${\phi}$-X-ring if R/Nil(R) is an X-domain. This device was introduced by Badawi [8] to study rings with zero divisors with a homomorphic image a particular type of domain. We use it to introduce and study a number of concepts such as ${\phi}$-Schreier rings, ${\phi}$-quasi-Schreier rings, ${\phi}$-almost-rings, ${\phi}$-almost-quasi-Schreier rings, ${\phi}$-GCD rings, ${\phi}$-generalized GCD rings and ${\phi}$-almost GCD rings as rings R with Nil(R) a divided prime ideal of R such that R/Nil(R) is a Schreier domain, quasi-Schreier domain, almost domain, almost-quasi-Schreier domain, GCD domain, generalized GCD domain and almost GCD domain, respectively. We study some generalizations of these concepts, in light of generalizations of these concepts in the domain case, as well. Here a domain D is pre-Schreier if for all $x,y,z{\in}D{\backslash}0$, x | yz in D implies that x = rs where r | y and s | z. An integrally closed pre-Schreier domain was initially called a Schreier domain by Cohn in [15] where it was shown that a GCD domain is a Schreier domain.