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ABSTRACT. In this article, we generalize a well-known result of Hebisch and Weinert that
states that a finite semidomain is either zerosumfree or a ring. Specifically, we show that
the class of commutative semirings S such that S has nonzero characteristic and every
zero-divisor of S is nilpotent can be partitioned into zerosumfree semirings and rings. In
addition, we demonstrate that if S is a finite commutative semiring such that the set of
zero-divisors of S forms a subtractive ideal of S, then either every zero-sum of S is nilpo-
tent or S must be a ring. An example is given to establish the existence of semirings in this
latter category with both nontrivial zero-sums and zero-divisors that are not nilpotent.

1. Introduction

This article is devoted to an exploration of how ideal-theoretic considerations in
commutative semirings, particularly finite commutative semirings, impact the mul-
tiplicative behavior of those elements of the semiring that have additive inverses
in the semiring. The general question as to the algebraic nature of these so-called
“zero-sums” of a semiring is one of the most central in the theory of semirings. We
are especially motivated by a result of Hebisch and Weinert [9, Corollary 3.4, p. 81]
that establishes that the class of finite semidomains can be partitioned by the an-
tipodal properties of being zerosumfree (that is, only the zero element is a zero-sum
of the semiring) and being a ring (where, by definition, every element is a zero-sum
of the semiring). Of course, there exist infinite semidomains with nontrivial zero-
sums that are not rings; for example, the polynomial semiring XZ[X] + N, where
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Z is the ring of integers and N is the semiring of nonnegative integers. However,
we demonstrate here that the Hebisch-Weinert result can be generalized, even to
certain infinite semirings, by means of certain ideal-theoretic properties connected
with the set of zero-divisors of a semiring.

In Section 2, we focus on a class of semiring, properly containing the class of
semidomains, that is representable by the property that every zero-divisor of the
semiring is nilpotent. We begin by presenting several well-known fundamental facts
concerning prime ideals of a semiring in Theorem 2.1 and Corollary 2.3 that prove
useful throughout this article. Proposition 2.4 then shows that the semirings being
considered in this section can, in fact, be conveniently characterized by the property
that the zero ideal is a primary ideal of the semiring. Next, Proposition 2.6 along
with Corollary 2.7 underscore the influence that the (principal) ideal structure of
a semiring can have on the behavior of the zero-sums of the semiring. After pre-
senting some basic information in Proposition 2.8 on the general relationships that
exist amongst the sets of zero-divisors, non-(multiplicatively) cancellative elements,
(multiplicatively) cancellative elements, and units of a semiring, we develop addi-
tional information along these lines in the context of certain semirings of nonzero
characteristic in Theorem 2.9 and Corollary 2.10. Moreover, Corollary 2.10 reveals
that, in this context, equality of the set of zero-divisors of the semiring and the set
of non-cancellative elements of the semiring characterizes when every element of the
semiring is a zero-sum of the semiring, that is, when the semiring is a ring. Theorem
2.12 then answers a natural question suggested by Corollary 2.10 by showing that,
in a finite semiring that is not a ring, any zero-sum of the semiring must, in fact, be
more specialized than simply an arbitrary non-cancellative element of the semiring—
it must be a zero-divisor of the semiring. With much heuristic evidence established
then, we present the main theorem of this section in Theorem 2.13. Theorem 2.13
reveals that for semirings of nonzero characteristic, those that are members of the
class of semiring being considered in this section are either zerosumfree or rings.

In Section 3, we shift our focus to another class of semiring, also properly
containing the class of semidomains, that is representable by the property that the
set of zero-divisors of the semiring is a subtractive ideal of the semiring. We are
motivated in this regard by the recent success of studies of the notion of “primal
ideal” for (commutative) rings in such articles as [6] and [7]. Here, we extend the
usual definition of “primal ideal” for rings to create the (inequivalent) notions of
“primal ideal” and “s-primal ideal” for semirings in Definition 3.1. In parallel then
with the characterization (Proposition 2.4) of the relevant property of semirings in
Section 2 by means of the zero ideal, we couch the relevant property of semirings
in this section in terms of the property that the zero ideal of the semiring is an
s-primal ideal of the semiring. We first demonstrate that s-primal ideals need not
themselves be subtractive ideals in Example 3.2 by utilizing a novel extension of
the notion of “idealization” for rings. We next provide some additional elementary
facts in Propositions 3.3 and 3.4 concerning primal ideals for semirings. Proposition
3.5 and Corollary 3.6, in conjunction with Example 3.7, then reveal that, in fact,
the class of semiring being considered in this section properly contains the class
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of semiring considered in Section 2. However, Example 3.7 also shows that the
main theorem (Theorem 2.13) of Section 2 cannot be generalized to semirings of
nonzero characteristic for which the zero ideal is an s-primal ideal of the semiring.
Nevertheless, the main theorem, Theorem 3.9, of this section reveals that for finite
semirings that are not rings and for which the zero ideal is an s-primal ideal of
the semiring, the zero-sums of the semiring must be found amongst the nilpotent
elements of the semiring. Moreover, we are able to provide in Corollary 3.10 an
extension of the Hebisch-Weinert result itself based upon the notion of “s-primal
ideal”. We conclude this article then with a semiring-theoretic analogue of the
“Prime Avoidance Lemma” in Lemma 3.11 and a theorem (Theorem 3.12) that
gives a context for when the theory of finite semirings for which the zero ideal is an
s-primal ideal of the semiring reduces to the motivating theory of finite semidomains.

Throughout this article, we adopt the standard [8] definition for “semiring”.
Specifically, (S,+,-) (or simply S if the operations of + and - are understood) is
called a semiring if (S, +) is an (additive) abelian monoid with identity 0, (.5,-) is
a (multiplicative) monoid with identity 1, multiplication distributes over addition
from both the left and the right, and 0a = 0 = a0 for all a € S. Moreover, we
will assume that all semirings S in this article are commutative (that is, (5,-) is
an abelian monoid) with 1 # 0. In addition, we note that a subsemiring T of the
semiring S, by definition [8], contains both the 0 and the 1 of S.

We now give some definitions that are used frequently throughout this article.
Let S be a commutative semiring. A nonempty subset I of S is called an ideal
of Sif a+b € I and sa € I whenever a,b € I and s € S. The ideal I of S
is called a prime ideal of S if I is a proper ideal of S such that either a € I or
b € I whenever a,b € S such that ab € I. The radical of the ideal I is given
by rad(I) = {a € S | there exists a positive integer n such that a™ € I}. The
ideal I of S is called subtractive if a,b € S such that both a+b € I and b € I
imply that a € I. Given a nonempty subset A of S, the ideal generated by A is
(A) = {s1a1 + s2a2 + -+ + Span | 8; € S,a; € A}. In particular, for a € S, the set
(a) =aS ={as|s € S} is an ideal of S called the principal ideal of S generated by
a.

Following [9], an element a in a semiring S is called a zero-sum of S if there
exists an element b € S such that a + b = 0 (note here that, unlike in [9], we
include 0 in the set of zero-sums of a semiring). In such a case, the element b is
unique and is designated by —a. A semiring S is called zerosumfree if 0 is the
only zero-sum of S. An element a of a commutative semiring S is called a zero-
divisor of S if there exists 0 # b € S such that ab = 0 (note here that we include
0 in the set of zero-divisors of a semiring). The collection of all zero-divisors of
a commutative semiring S will be denoted by ZD(S). Furthermore, the subset
{a € S | there exists a positive integer n such that a™ = 0} of ZD(S) consisting
of the nilpotent elements of S will be denoted by Nil(S). A semiring with 1 # 0
is called a semidomain if it is commutative and does not have any nonzero zero-
divisors. That is, a semidomain is precisely a commutative entire semiring with
1 # 0. It is clear that the commutative semiring S is a semidomain if and only if
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{0} is a prime ideal of S. Finally, throughout this article, by “cancellative element”,
we shall always mean multiplicatively cancellative element. That is, an element a
of a commutative semiring S will be called a cancellative element of S if for all
b,c € S, it is the case that b = ¢ whenever ab = ac.

Any unexplained terminology is standard, as in [8].

2. Semirings S for which Nil(S) = ZD(5)

One of the most natural generalizations of “semidomain” can be discovered by
considering the class of (commutative) semirings S for which every zero-divisor of S
is nilpotent. Rings with this property were valuable in the studies of “going-down
rings” and “quasi-going-up rings” conducted in [3] and [10], respectively, and, more
recently, in the study of “quasilocal going-down rings” in [4]. Moreover, there are
numerous examples of semirings with this property; in particular, if p is a prime
and n is a positive integer, each of Z/p"Z and Z(Z/p"7Z), the semiring of ideals of
Z/p"7Z under the usual addition and multiplication of ideals, is a semiring such that
every zero-divisor of the semiring is a nilpotent element of the semiring. In fact,
each member of the latter class of examples is a semiring that is not a ring and is
a semidomain precisely when n = 1.

Since, for a semiring .5, the set of nilpotent elements of S is precisely the radical
of the zero ideal of S, we begin with a fundamental fact found in [8, Proposition
7.28] concerning the connection between the radical of an ideal of a commutative
semiring and the prime ideals of the semiring.

Theorem 2.1(Krull’s Theorem). Let S be a semiring. If I is an ideal of S, then
rad(I) = N{P | P is a prime ideal of S such that P 2 I}. In particular, Nil(S) =
N{P | P is a prime ideal of S}.

Theorem 2.1 highlights the fact that there exists an intimate relationship be-
tween the (prime) ideal structure of a semiring S and the set Nil(S). (We remark
that the set ZD(S) also enjoys a close relationship with the prime ideal structure
of S in that ZD(S) is a set-theoretic union of prime ideals of S; cf. [12, Theo-
rem 2, p. 2] and [8, Proposition 7.12, p.87]. However, we shall not need this fact
for our purposes in this article.) Moreover, the following generalization of “prime
ideal” will prove useful as an alternative way of characterizing semirings S for which

Nil(S) = ZD(S).

Definition 2.2. As in [8], a proper ideal I of a semiring S is called a primary ideal
of S if whenever a,b € S such that ab € I and a ¢ I, it must be the case that there
exists a positive integer n for which b" € I.

We thus have the following immediate corollary (cf. [8, Corollary 7.29]) of
Theorem 2.1 in case the ideal I is a primary ideal of the semiring S.

Corollary 2.3. Let I be a primary ideal of a semiring S. Then rad(I) is the
smallest prime ideal of S containing I. In particular, if I is a prime ideal of S,
then I =rad([).
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We now take this opportunity to make a convenient piece of notation. Let
I be an ideal of a semiring S. Put ZDg(I) = {a € S | thereexists s €
S\I such that sa € I}, the set of so-called “non-prime” elements of S to I. It
is straightforward to see that I C rad(I) C ZDg(I). Proposition 2.4, which is well-
known in the ring-theoretic context (cf. [2, p. 50]), provides characterizations in
terms of the notions of “primary ideal” and “prime ideal” of when certain equalities
amongst these algebraic structures occur.

Proposition 2.4. Let I be an ideal of the semiring S.

(a) I is a primary ideal of S if and only if rad(I) = ZDg(I). In particular, {0} is
a primary ideal of S if and only if Nil(S) = ZD(S).

(b) I is a prime ideal of S if and only if I = ZDg(I).

Proof. (a) (=) It is sufficient to show that if I is a primary ideal of S, then
ZDg(I) Crad(I). Suppose then that I is a primary ideal of S, and let a € ZDg(I).
Then there exists b € S\I such that ab € I. Since I is a primary ideal of S, there
exists a positive integer n such that a™ € I, whence a € rad(I), as desired.

(«=) Suppose that rad(I) = ZDg(I), and let a,b € S such that ab € I but a ¢ I.
Then b € ZDg(I), and so b € rad(I). Thus, there exists a positive integer n such
that ™ € I. Therefore, I must be a primary ideal of S.

(b) This equivalence follows by combining Corollary 2.3 with part (a) above. O

We next briefly turn our attention in Propositions 2.5 and 2.6 and Corollary
2.7 below to collecting some elementary facts concerning the impact of certain
intersections between the set of zero-sums of a semiring and several other special
subsets of a semiring. Moreover, these results inaugurate a focus on the motivating
idea of this article, namely, determining relationships that exist between the zero-
sums and zero-divisors of a semiring S that provide sufficient conditions for S to be
a ring.

Proposition 2.5. Let S be a semiring. Then the following are equivalent:

(1) S is a ring,

(2) some unit of S is a zero-sum of S,

(3) the 1 of S is a zero-sum of S.

Proof. Each of the implications (1) = (2), (1) = (3), and (3) = (2) are patent.
Therefore, it suffices to show (2) = (1). Suppose (2). Let a € S, and choose a unit
u of S that is a zero-sum of S. Let v € S such that wv = 1. Then (—u)va+a =
((—uw)v + uv)a = (—u + u)va = 0, whence a is a zero-sum of S. Therefore, S is a
ring, to complete the proof. O

Proposition 2.6. Let S be a semiring that is not a ring. Let a be a zero-sum of S
such that —a € aS. Then a is a zero-divisor of S.

Proof. Let S be a semiring that is not a ring, and let a be a zero-sum of S such that
—a € aS. Choose s € S such that —a = as. Then a(s + 1) = 0. However, since S
is not a ring, s + 1 # 0 by Proposition 2.5. Therefore, a must be a zero-divisor of
S. O
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Corollary 2.7. Let S be a semidomain such that there exists a nonzero zero-sum
a of S with the property that —a € aS. Then S is a domain.

For several of the ensuing results, we let Noncan(S) denote the set of non-
(multiplicatively) cancellative elements of the semiring S and Can(S) denote the
set of (multiplicatively) cancellative elements of the semiring S. We also denote the
set of units of the semiring S by U(S). Proposition 2.8 gives some basic containment
relationships amongst these sets along with the set ZD(S) of zero-divisors of the
semiring S.

Proposition 2.8. Let S be a semiring.
(a) ZD(S) C Noncan(S) and U(S) C Can(S).
(b) If S is finite, then Can(S) = U(S).
Proof. (a) Let a € ZD(S). Then there exists 0 # b € S such that ab = 0 = a0.
Therefore, a € Noncan(S), as desired.

Let u € U(S). Then there exists v € U(S) such that vu = 1. Let a,b € S such
that ua = ub. Then a = vua = vub = b. Therefore, u € Can(S), as desired.
(b) Let S be a finite semiring. Part (a) above establishes that ¢/(S) C Can(S). For
the reverse containment, let a € Can(S). Consider the function A: S — S given
by s — as. Since a is a cancellative element of S, A is injective. Since S is finite,
A must then be surjective. Thus, there exists b € S such that ab = 1. Therefore,
a € U(S), as desired. O

Theorem 2.9 along with Corollary 2.10 below provide for a (rather substantial)
collection of semirings S in which the containment ZD(S) C Noncan(S) given in
part (a) of Proposition 2.8 cannot be replaced with an equality of sets. In par-
ticular, Corollary 2.10 reveals that, within this collection, information about the
set of zero-divisors of a semiring once again furnishes information about the set
of zero-sums of the semiring (see, in particular, Proposition 2.6 and Corollary 2.7
above). For each of these results, we make use of the notion of the “characteristic”
of a semiring, introduced in [1]. Specifically, the semiring S has characteristic 0 if
the characteristic (or basic) subsemiring B(S) = {nl | n € N} of S is isomorphic to
N and characteristic (n,i) if B(S) is isomorphic to B(n, ).

Theorem 2.9. Let S be a semiring of characteristic (n,i), where i > 1. Then
Noncan(S) # ZD(S).

Proof. Put k=n—i+landa=1+1+ --- +1 (k times). Let B(S) be the char-
acteristic (or basic) subsemiring of S. Then a € B(S) C S. Since 2 <k <n-—1,1it
follows that a is a nonunit of B(S). By Proposition 2.8(b), a is a non-cancellative
element of B(S), whence a is a non-cancellative element of S.

Now, suppose that there exists a nonzero element b € S such that ab = 0. Then
kb = 0, and so, in particular, b is a zero-sum of S. However, since the character-
istic of S is (n,7), we have that nb = ib. Thus, (k — 1)b = (n —i)b = 0, and so
b=b+ (k—1)b=kb=0, a contradiction. Therefore, a € Noncan(S)\ZD(S). The
result follows. O
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Corollary 2.10. Let S be a semiring of characteristic (n,i), where i # 1. Then S
is a ring if and only if Noncan(S) = ZD(S).

Proof. The “if” assertion follows immediately from Theorem 2.9 and the fact that
i = 0 precisely when S is a ring. Conversely, since it is well-known that non-
cancellative elements of a ring are zero-divisors of the ring, the “only if” assertion
follows from Proposition 2.8(a). O

Remark 2.11. (a) Theorem 2.9 is best possible, in the sense that “characteristic
(n, %), where ¢ > 1”7 cannot be replaced with either “characteristic (n,1)” or “char-
acteristic 0”. For example, S = Z(Z/p*Z), the semiring of ideals of Z/p*Z, where p
is a prime, under the usual addition and multiplication of ideals, has characteristic
(2,1), but Noncan(S) = S\{Z/p*Z} = ZD(9).

Now, suppose n > 2. Then the direct product T' = Z/(n — 1)Z x B(2,1) has

characteristic (n,1), but Noncan(T') = {(a,0) | a € Z/(n — 1)Z} U {(b,1) | b €
ZD(Z/(n — 1)Z)} = ZD(T). (In general, it is straightforward to verify that the
characteristic of B(m,j) x B(n,i) is ([m — j,n — i] + max(i, j), max(i, j)), where
[m — j,n — i] denotes the least common multiple of m — j and n — i.) For the
“characteristic 0” case, let V be a half domain (that is, V' is a subsemiring of an
integral domain) of characteristic 0 that is not itself a domain (for example, take
V =N). Then Noncan(V) = {0} = ZD(V).
(b) We note here that, in fact, any of the semirings B(n,i), where n > 2 and
i > 0, themselves contain non-(multiplicatively) cancellative elements that are not
zero-divisors of the semiring. Since ¢ > 0, it is clear that each such semiring is a
semidomain, whence ZD(B(n,i)) = {0} for each such B(n,i). However, each of
these B(n,i)’s must contain nonzero non-cancellative elements. For otherwise, by
Proposition 2.8(b), a counterexample would be a finite semifield of order > 2 that
is not a field, contradicting either [13, Theorem 5 (1), p. 333] or [1, Theorem 6, p.
576].

By Corollary 2.10, there is certainly no lack of finite semirings S for which
Noncan(S) 2 ZD(S). In light of Propositions 2.5 and 2.8(b), one might be led, a
priori, to believe that there exist finite semirings S (necessarily not rings) with the
property that there exist zero-sums in the set Noncan(S)\ZD(S). Theorem 2.12
below establishes that this is not the case.

Theorem 2.12. Let S be a semiring of nonzero characteristic. Then either every
zero-sum of S is a zero-divisor of S or S is a ring.

Proof. Suppose that S is a semiring of nonzero characteristic, say (n,7). Let a be a
zero-sum of S. Since a € S, it must be the case that na = ia. However, since a is
a zero-sum of S, it follows that (1+ 1+ -+ +1)a = (n — i)a = 0, where there are
n — 1 1’s in the summation. If this summation of 1’s is zero, then 1 is a zero-sum of
S and, therefore, S is a ring by Proposition 2.5. If, instead, this summation of 1’s
is nonzero, then a must be a zero-divisor of S. O

We now provide the main theorem of this section in Theorem 2.13. Theorem
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2.13 reveals that, for semirings S for which every zero-divisor of S is nilpotent, those
which have nonzero characteristic must be of one of two extremes, namely, either
every element of S is a zero-sum of S or only 0 is a zero-sum of S. This represents a
substantial generalization of the result of Hebisch and Weinert [9, Corollary 3.4, p.
81] for finite semidomains. Moreover, we recover this result of Hebisch and Weinert
in Corollary 2.14.

Theorem 2.13. Let S be a semiring of nonzero characteristic. If {0} is a primary
ideal of S, then S is either zerosumfree or a Ting.

Proof. Suppose that S is a semiring of nonzero characteristic, say (n, ), and suppose
that {0} is a primary ideal of S. Assume that S is not zerosumfree. Choose then
a nonzero zero-sum a € S. Since S has characteristic (n,7), we have that na = ia,
whence (1414 --- +1)a = (n—14)a = 0, where there are n—14 1’s in the summation.
Since a is nonzero and {0} is a primary ideal of S, there exists a positive integer k
such that (14+1+ --- +1)¥ =0, and so 1+ 1+ --- +1 = 0, where the are (n —i)*
1’s in the last summation. Thus, 1 is a zero-sum of S and, therefore, S is a ring by
Proposition 2.5. O

Corollary 2.14. If S is a finite semiring such that {0} is a primary ideal of S,
then S is either zerosumfree or a ring. In particular, if S is a finite semidomain,
then S is either zerosumfree or a Ting.

3. Semirings S for which ZD(S) is a subtractive ideal of S

In this section, we consider another generalization of “semidomain” in the class
of (commutative) semirings S for which the zero-divisors of S form a subtractive
ideal of S. It turns out (Corollary 3.6) that such a class of semiring actually contains
the class of semiring for which {0} is a primary ideal of the semiring considered in the
previous section. However, Example 3.7 reveals that the main theorem (Theorem
2.13) of the previous section cannot be generalized along these lines. Nevertheless,
the main theorem, Theorem 3.9, of this section asserts positive information about
the zero-sums in finite semirings S with the property that the zero-divisors of S
form a subtractive ideal of S.

To parallel with the characterization (Proposition 2.4) of the relevant property
of semirings in Section 2 using primary ideals, we make the following definitions (cf.
[5]) of “primal ideal” and “s-primal ideal” for a (commutative) semiring.

Definition 3.1. Let S be a semiring, and let I be a proper ideal of S. If ZDg(I)
is an ideal of S, then we call I a primal ideal of S. In such a case, the ideal ZDg (1)
is referred to as the adjoint ideal of I. Moreover, if ZDg(I) is a subtractive ideal of
S, then we call I an s-primal ideal of S.

Of course, since there exist non-subtractive prime ideals, it is clear that there
exist primal ideals that are not s-primal ideals. Nevertheless, there is a key sim-
ilarity between the theory of s-primal ideals for semirings and its counterpart for
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rings. In particular, for a(n s-)primal ideal I of a ring R, it is easy to see that the
set ZDg(I) corresponds to the set of zero-divisors in the factor ring R/I. For an
s-primal ideal I of a semiring S, it turns out that the set ZDg(I) also corresponds
to the set of zero-divisors in the Bourne factor semiring S/I since S/I = S/(0/I),
where 0/ is a proper subtractive ideal of S contained in ZDg(I). However, Exam-
ple 3.2 below shows that I itself need not be a subtractive ideal of the semiring S
even if [ is an s-primal ideal of S.

Example 3.2. There exists a semiring S and an ideal I of S such that [ is
an s-primal ideal of S, but I is not itself a subtractive ideal of S. Moreover, it
may be arranged that S is finite. Let T be a semiring and F a T-semimodule.
Then one can create a semiring extension of T appropriately dubbed (from its
ring-theoretic counterpart) an “idealization” of T" and denoted by T'(4)E (for back-
ground on idealizations in the context of rings and modules, see [11], [14]). The
semiring T'(4+)E has the additive structure of ' ® E and has multiplication given
by (t1,e1)(t2,e2) = (tite, t1ea + toe1) (compare with a Dorroh extension of T').
Now, let T" be a semidomain, let U be a subsemiring of 7', and suppose there
exists a nonzero, nonidentity (multiplicatively and additively) idempotent element
a of T such that a +1 = a and a is “prime” to U, that is, for each 0 # u € U,
ut = a if and only if t = a, where t € T. We remark that each of these conditions
can be met by taking 7" to be an idempotent semidomain for which there exists a
nonzero, nonidentity element a of T such that a + 1 = a and taking U to be the
characteristic (or basic) subsemiring of T'. Note that T is a U-semimodule under
the multiplication of T. Put S = U(+)T, and put I = {(0,0),(0,a)}. The fact
that I is an ideal of S follows from the facts that a is idempotent and a is prime
to U. Moreover, I is not a subtractive ideal of S, as (0,a) + (0,1) = (0,a) and
(0,1) ¢ I. However, observe that every element of S of the form (0,¢), where ¢t € T,
is nilpotent with index of nilpotency 2. Thus, {(0,¢) | t € T} C ZDg(I). Now,
suppose that (u,t) € ZDg(I) such that u # 0. Then there exists (v,w) € S\I such
that (vu, vt +vw) = (v,w)(u,t) € I. Thus, vu = 0 and, since T' is a semidomain
and u # 0, we have that v = 0. Hence, either uw = 0 or uw = a. In the former
case, it follows that w = 0, a contradiction to the fact that (v,w) ¢ I. In the latter
case, it follows that w = a, again a contradiction to the fact that (v,w) ¢ I. We
conclude then that ZDg(I) = {(0,t) | t € T'}. Moreover, it is straightforward then
to verify that ZDg(I) is a subtractive ideal of S, whence I is an s-primal ideal of S.

We next provide some basic facts in Propositions 3.3 and 3.4 below concerning
primal ideals for semirings, the statements of which are identical, mutatis mutandis,
to the corresponding statements for primal ideals of rings (see [5]).

Proposition 3.3. Let S be a semiring. If I is a primary ideal of S, then I is a
primal ideal of S.

Proof. The result follows by combining Corollary 2.3 and Proposition 2.4(a). O
Proposition 3.4. Let S be a semiring. If I is a primal ideal of S, then ZDg(I) is
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a prime ideal of S.

Proof. Since ZDg(I) is an ideal of S, by definition, it is sufficient then to show
that ZDg(I) is a proper ideal of S and whenever a,b € S such that ab € ZDg(I)
and a ¢ ZDg(I), it must be the case that b € ZDg(I). Suppose that 1 € ZDg(I).
Then, by definition, there exists s € S\I such that s = s-1 € I, a contradiction.
Thus, ZDg(I) is a proper ideal of S. Now, let a,b € S such that ab € ZDg(I)
and a ¢ ZDg(I). Then there exists s € S\I such that (ab)s € I. However, since
a ¢ ZDg(I), it must be the case that bs € I, whence b € ZDg(I), as desired. O

Thanks to Proposition 3.3, it is evident that if {0} is a primary ideal of a
semiring S, then ZD(S) is an ideal of S. However, Proposition 3.5 asserts that, in
this context, more can be said about the ideal ZD(S). In particular, Corollary 3.6
formalizes the connection between the class of semiring considered in Section 2 and
the class of semiring being considered in this section.

Proposition 3.5. Let S be a semiring. If I is a subtractive primary ideal of S,
then rad(I) = ZDg(I) is a subtractive (prime) ideal of S.

Proof. Suppose that I is a subtractive primary ideal of S. The fact that rad(I) =
ZDg(I) follows from Proposition 2.4(a). We show then that rad([l) is a subtractive
ideal of S. Let a,b € S such that a + b € rad(I) and b € rad(I). Let n be the
smallest positive integer such that 6™ € I and let m be a positive integer such that
(a + b)™ € I. By the Binomial Theorem, a™b"~! + ma™ 1bp" + ... + pmHn-1 =
b Ya+0b)™ € 1. As b" € I and I is a subtractive ideal, we then have that
amb"~! € I. By assumption, b"~! ¢ I. Thus, since I is a primary ideal of S,
there exists a positive integer k such that a™* = (a™)* € I, whence a € rad([).
Therefore, rad(1) is a subtractive ideal. The fact that rad(I) is also a prime ideal
follows from Corollary 2.3. (|

Corollary 3.6. Let S be a semiring. If I is a subtractive primary ideal of S, then
I is an s-primal ideal of S. In particular, if {0} is a primary ideal of S, then {0}
is an s-primal ideal of S, that is, if Nil(S) = ZD(S), then ZD(S) is a subtractive
ideal of S.

In light of Corollary 3.6, Example 3.7 below demonstrates that the conditions
“Nil(S) = ZD(S)” and “ZD(S) is a subtractive ideal of S” for a semiring S are
logically inequivalent. As in [8], we call an ideal I of the semiring S a strong ideal
of S if whenever a,b € S such that a +b € I, then both a € I and b € I. In
addition, a semiring S is called simple if a+1 =1 for all @ € S, and a semiring S is
called idempotent if it is both additively and multiplicatively idempotent, that is, if
a+a=a=a?forallacs.

Example 3.7. There exists a finite semiring S such that {0} is an s-primal ideal
of S, but {0} is not a primary ideal of S. Moreover, it may be arranged that
either ZD(S) is a strong ideal of S or there are nontrivial zero-sums of S. Let T
be a finite semidomain such that there exists a nonzero principal subtractive prime
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ideal aT of T' (for example, take T to be either the idempotent, simple semidomain
{0,1,a} or the semidomain B(3,1) with a = 2). Let X be an indeterminate over
T. Since T[X] & ®nT as additive monoids, it is straightforward to verify that
the ideal I = (X?,aX) is a subtractive ideal of T[X]. Put S = T[X]/I, the
Bourne factor semiring of T[X] by I. Observe that Nil(S) = {tX/I | t € T}
and ZD(S) = {(t1X +to)/I | t1 € Tty € aT}. Thus, Nil(S) & ZD(S), and so,
by Proposition 2.4(a), {0} is not a primary ideal of S. However, since aT is a
subtractive ideal of T, it follows that ZD(.S) is a subtractive ideal of S. Thus, {0}
is an s-primal ideal of S. Now, since T' must be zerosumfiree (see [9, Corollary 3.4,
p. 81]), it follows that each of {0} and Nil(S) is automatically a strong ideal of S.
Moreover, by taking aT to be a strong ideal of T', we can arrange that ZD(S) is also
strong ideal of S. If instead we take a to be a sum of 1’s (which necessarily means
that aT" is not a strong ideal of T'), then we can arrange that there are nontrivial
zero-sums of S; in particular, X/I € Nil(S) would be a nontrivial zero-sum of S.

Remark 3.8. (a) It is worth noting that the finite semirings S developed in
Example 3.7 are necessarily not rings. That is to say, if R is a finite ring, then
{0} is a(n s-) primal ideal of R precisely when {0} is a primary ideal of R. For let
R be a finite ring, and let {0} be a primal ideal of R. Then the set of zero-divisors
is a prime ideal of R (see Proposition 3.4 above). However, it is well-known that
every prime ideal of a finite ring is maximal ideal of the ring (cf. [2, Proposition
8.1, p. 89]) and every element of a finite ring is either a zero-divisor of the ring
or a unit of the ring (see Proposition 2.8(b) and Corollary 2.10 above). Thus, the
set of zero-divisors of R must be the only prime ideal of R, whence, by Theorem
2.1, every zero-divisor of R is nilpotent. By Proposition 2.4(a), this means that {0}
must be a primary ideal of R. Therefore, unlike in the theory of finite rings, each
of the studies of primal ideals and s-primal ideals are significant generalizations of
the study of primary ideals in the more general context of finite semirings.

(b) As illustrated in Example 3.7, the fact that there exist finite semirings S for
which {0} is an s-primal ideal of S but for which there exist nontrivial zero-sums of
S shows that both Theorem 2.13 and Corollary 2.14 are best possible, in the sense
that “{0} is a primary ideal of S” cannot be replaced in either result with “{0} is
an s-primal ideal of S”.

We now provide the main theorem, Theorem 3.9, of this section. With respect
to Theorem 2.12, Theorem 3.9 shows that if one further assumes that the set of
zero-divisors of the finite semiring S forms a subtractive ideal of S, then no zero-
sums of S' may be found outside the set of nilpotent elements of S without S being
aring. (Hence, the nontrivial zero-sum X/I of the semiring S in Example 3.7 must
necessarily be nilpotent.)

Theorem 3.9. Let S be a finite semiring such that {0} is an s-primal ideal of S.
Then either every zero-sum of S is nilpotent or S is a ring.

Proof. Let a be a zero-sum of S, and suppose that S is not a ring. Then, by Theorem
2.12, a must be a zero-divisor of .S, whence —a must also be a zero-divisor of S. Now,
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note that the set {a” | n > 1} C S is finite as S is finite. Thus, there exist positive
integers m > n such that a™ = a". We then have that a"(1 + (—a)(a™ "71)) =
a” + (—a)(@™ 1) = a™ + (—a)(a™ 1) = a™ (a + (—a)) = 0. If a™ # 0, then
1+ (—a)(a™ ") is a zero-divisor of S. However, since {0} is an s-primal ideal of
S, it follows that 1 is a zero-divisor of S, a contradiction. Therefore, a” = 0, and
so a is nilpotent, as desired. (Il

Corollary 3.10. Let S be a reduced finite semiring—that is, S is a finite semiring
that has no nonzero nilpotent elements. Suppose that {0} is an s-primal ideal of S.
Then S is either zerosumfree or a ring. In particular, if S is a finite semidomain,
then S is either zerosumfree or a ring.

We conclude this paper with Theorem 3.12, which provides a context in which
the study of reduced finite semirings S where {0} is a(n s-)primal ideal of S is
equivalent to the study of finite semidomains. We first provide a semiring-theoretic
analogue to the Prime Avoidance Lemma in Lemma 3.11.

Lemma 3.11(Prime Avoidance Lemma for Semirings). Let Py, Py, P3, -+, P,
(n > 2) be subtractive ideals of a semiring S, with Py and Py not necessarily prime,
but P53, Py, --- , P, prime. Let I be an ideal of S. If I C U?_, P;, then for some k it
must be the case that I C Py.

Proof. Deny. Without loss of generality, assume that I is not contained in the
union of any collection of n — 1 of the P;’s. For each i = 1,2, --- ,n choose then an
element a; € I\(PLUP,U --- UP,_; UP;41 U --- UPR,). By hypothesis, a; € P; for
each i. First, assume n =2, with I ¢ Py and I ¢ P,. Then a; € P, and as ¢ Py,
whence a1 + az ¢ Py, as Py is a subtractive ideal of S. Similarly, a; 4+ as ¢ P, as
P, is a subtractive ideal of S. Thus, a; + as ¢ I, contradicting the fact that I is an
ideal of S containing both a; and as.

Now, assume that n > 2. Observe that ajas --- a,_1 € PLNPyN---NP,_1, but
Ay, ¢ P1UP2U ce UPn_l. Puta = a1ag * -+ Ap—1+an. Since each Ofpl, PQ, s aPn—l
is a subtractive ideal of S, the element a cannot be element of PyUP,U --- UP,_1;
for otherwise, a,, would be an element of some P;, i = 1,2, --- ,n— 1, and hence an
element of their union. Now, for each i = 1,2, --- ,n — 1 we have that a; ¢ P,, and
S0 ajag -+ an—1 ¢ P, since P, is prime. But, a,, € P,, and so a ¢ P, since P, is a
subtractive ideal of S. Thus, a € I, but a ¢ PyUP, U --- U P,, a contradiction. [

Theorem 3.12. Let S be a reduced finite semiring—that is, S is a finite semiring
that has no nonzero nilpotent elements—such that {0} is a (n s-)primal ideal of S.
Suppose that every prime ideal of S is a subtractive ideal of S. Then S is a semido-
main.

Proof. By Proposition 3.4, ZD(S) must be a prime ideal of S. Moreover, since S is
finite, there can be only finitely many other prime ideals of S, say Py, Ps, -+, Py.
By Theorem 2.1, we have that {0} = Nil(S) = ZD(S)n P NP, N --- N P,. Now,
let 0 # a € ZD(S). Then there exists a 0 # b € S such that ab = 0 € P,
for each ¢ = 1,2,---,n. Thus there exists a j such that b ¢ P;; for oth-
erwise, b € ZD(S)Nn P N PN --- NP, = {0}, a contradiction. However,
since ab € P; and P; is a prime ideal of S, we have that a € P;. There-
fore, ZD(S) C P, UP, U --- UP,. By Lemma 3.11, there exists a k such that
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ZD(S) C Py. Thus, {0} = ZD(S)N P A PN -+ N Py_1NPey1 N -+ N P,. Contin-

uing in this fashion, we have that ZD(S) C P; for each ¢ = 1,2, --- ,n. Therefore,
ZD(S)=ZD(S)NP NPN --- NP, ={0}, and so S is a semidomain. O
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