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Abstract. In this paper, we study and establish some interesting results of ideals in a

poset. It is shown that for a nonzero ideal I of a poset P , there are at most two strongly

prime ideals of P that are minimal over I. Also, we study the notion of primal ideals in a

poset and the relationship among the primal ideals and strongly prime ideals is considered.

1. Introduction

Throughout this paper (P , ≤) denotes a poset with smallest element 0. For
basic terminology and notation for posets, we refer [9] and [6]. For M ⊆ P, let
L(M) = {x ∈ P : x ≤ m for all m ∈ M} denote the lower cone of M in P and
dually, let U(M) = {x ∈ P : m ≤ x for allm ∈M} be the upper cone ofM in P. Let
A,B ⊆ P , we shall write L(A,B) instead of L(A∪B) and dually for the upper cones.
If M = {x1, x2, ..., xn} is finite, then we use the notation L(x1, x2, ..., xn) instead
of L({x1, x2, ..., xn})(and dually). It is clear that for any subset A of P , we have
A ⊆ L(U(A)) and A ⊆ U(L(A)). If A ⊆ B, then L(B) ⊆ L(A) and U(B) ⊆ U(A).
Moreover, LUL(A) = L(A) and ULU(A) = U(A). Following [10], a non-empty
subset I of P is called a semi-ideal if b ∈ I and a ≤ b, then a ∈ I. A subset I of P
is called an ideal if a, b ∈ I implies L(U((a, b)) ⊆ I[9]. Following [8], for any subset
X of P , [X] is the smallest ideal of P containing X. If X = {b}, then L(b) is called
the principle ideal of P generated by b. A proper semi-ideal (ideal) I of P is called
prime if L(a, b) ⊆ I implies that either a ∈ I or b ∈ I [6]. An ideal I of a poset P is
called semi-prime if L(a, b) ⊆ I and L(a, c) ⊆ I together imply L(a, U(b, c))) ⊆ I[9].
Following [3], an ideal I of P is called strongly prime if L(A∗, B∗) ⊆ I implies that
either A ⊆ I or B ⊆ I for different proper ideals A,B of P, where A∗ = A\{0}. A
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non-empty subset M of P is called an m-system if for any x1, x2 ∈M , there exists
t ∈ L(x1, x2) such that t ∈ M . Following [1], a non-empty subset M of P is called
a strongly m-system if A ∩M ̸= ∅ and B ∩M ̸= ∅ imply L(A∗, B∗) ∩M ̸= ∅ for
different proper ideals A,B of P . It is clear that an ideal I of P is strongly prime
if and only if P/I is a strongly m- system of P . Also every strongly m-system of
P is an m-system. Following [3], an ideal I of P is called strongly semi-prime if
L(A∗, B∗) ⊆ I and L(A∗, C∗) ⊆ I together imply L(A∗, U(B∗, C∗)) ⊆ I for any
different ideals A,B and C of P. For any semi-ideal I of P and a subset A of P , we

define < A, I >= {z ∈ P : L(a, z) ⊆ I for all a ∈ A} =
∩
a∈A

< a, I >[3]. If A = {x},

then we write < x, I > instead of < {x}, I >. For any ideal I of P , a strongly prime
ideal Q of P is said to be a minimal strongly prime ideal of I if I ⊆ Q and there
exists no strongly prime ideal R of P such that I ⊂ R ⊂ Q. The set of all strongly
prime ideals of P is denoted by Sspec(P ) and the set of minimal strongly prime
ideals of P is denoted by Smin(P ). For any ideal I of P , P (I) and SP (I) denotes
the intersection of all prime semi-ideals and strongly prime ideals of P containing
I. It is clear from Theorem 6 of [6] and Example 1.1 of [2] that P (I) = I and
SP (I) ̸= I for any ideal I of P . Following [1], let I be a semi-ideal of P. Then I is
said to have (*) condition if whenever L(A,B) ⊆ I, we have A ⊆< B, I > for any
subsets A and B of P.

2. Main Results

Theorem 2.1. Let M be a nonempty strongly m-system of P and J be an ideal
of P with J ∩M = ∅. Then J is contained in a strongly prime ideal I of P with
I ∩M = ∅.
Proof. Let S = {K : K is an ideal of P with K ∩ M = ∅}. Then S ̸= ∅ and
by Zorn’s lemma, there exists a maximal element I ∈ S with I ∩M = ∅. Let A
and B be ideals of P with L(A∗, B∗) ⊆ I and suppose that A * I and B * I.
Then there exists x ∈ A\I and y ∈ B\I such that I ⊂ I ∪ {x} ⊆ [I ∪ {x}] and
I ⊂ I ∪ {y} ⊆ [I ∪ {y}], which imply [I ∪ {x}] ∩M ̸= ∅ and [I ∪ {y}] ∩M ̸= ∅.
Since M is strongly m-system, we have L([I ∪ {x}]∗, [I ∪ {y}]∗) ∩ M ̸= ∅. But
L([I ∪ {x}]∗, [I ∪ {y}]∗) ⊆ L([I ∪ {x}]∗) ⊆ L(I∗) ⊆ I, which implies I ∩M ̸= ∅, a
contradiction. �
Theorem 2.2. Let I and J be ideals of P with {0} ̸= J ⊆ I. Then the following
are equivalent.

(i) I is a minimal strongly prime ideal of J .

(ii) For each x ∈ I, there exists t ∈ U(x) and y ∈ P\I such that L(L(t)∗, L(y)∗) ⊆
J .

(iii) If I has (*) condition, then for any x ∈ I, we have < x, J >* I.

Proof. (i)⇒ (ii) Let I be a minimal strongly prime ideal of J . Suppose that there
exists x ∈ I such that L(L(ti)

∗, L(yj)
∗) * J for all ti ∈ U(x) and yj ∈ P\I. Let
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M = {aij : aij ∈ L(L(ti)∗, L(yj)∗)\J for ti ∈ U(x) and yj ∈ P\I}. Then M ̸= ∅.
For any ideals A,B of P , let A ∩M ̸= ∅ and B ∩M ̸= ∅. Then there exists a ∈ A
and b ∈ B such that a, b ∈M . Let t ∈ L(A∗, B∗). Then t ∈ L(a, b). Since a, b ∈M ,
we have a ∈ L(L(ti)∗, L(yj)∗)\J and b ∈ L(L(tk)∗, L(yl)∗)\J for some ti, tk ∈ U(x)
and yj , yl ∈ P\I, which imply t ∈ L(L(ti)∗, L(yj)∗) with t /∈ J . Indeed, if t ∈ J ,
then a ∈ L(L(ti)∗) ⊆ L(t) ⊆ J , a contradiction. So M is a strongly m-system of
P . Since M ∩ J = ∅ and by Theorem , there exists a strongly prime ideal I1 of
P containing J with I1 ∩M = ∅. If x ∈ I1, then L(L(x)∗, L(yi)

∗) ⊆ I1 for every
yi ∈ P\I. But there exists q ∈ L(L(ti)

∗, L(yj)
∗)\J with q ∈ M , which implies

q ∈ L(L(ti)∗, L(yj)∗) ⊆ L(L(x)∗, L(yi)
∗) ⊆ I1 and I1 ∩M ̸= ∅, a contradiction. So

x /∈ I1. Let i1 ∈ I1 and suppose i1 /∈ I. Then i1 ∈ P\I and L(L(x)∗, L(i1)
∗) ⊆ I1.

But L(L(ti)
∗, L(i1)

∗) * J , which implies I1 ∩M ̸= ∅, a contradiction. Thus I1 ⊂ I,
which is again a contradiction to the minimality of I.

(ii)⇒ (i) Let I1 be a strongly prime ideal of P with J ⊆ I1 ⊆ I. Let x ∈ I.
Then there exists y ∈ P\I and t ∈ U(x) such that L(L(t)∗, L(y)∗) ⊆ J ⊆ I1. Since
y /∈ I1, we have L(t) ⊆ I1, which implies x ≤ t ∈ I1. Thus I ⊆ I1 and hence I is a
minimal strongly prime ideal of J .

(i)⇒ (iii) Let x ∈ I. Then by (ii), there exists y /∈ I and t ∈ U(x) such
that L(L(t)∗, L(y)∗) ⊆ J . Since J satisfies (*) condition, we have y ∈ L(y)∗ ⊆<
L(t)∗, J >⊆< x, J >, which implies < x, J >* I.

(iii)⇒ (i) Let Q be a strongly prime ideal of P such that J ⊆ Q ⊂ I and
x ∈ I\Q. Then < x, J >* I. So there exists y ∈< x, J > \I such that
L(L(x)∗, L(y)∗) ⊆ L(x, y) ⊆ J ⊆ Q. Since L(x) * Q, we have y ∈ Q, a con-
tradiction. �

The following example shows that the condition J ̸= {0} is not superficial in
Theorem 2.2.

Example 2.3. Consider P = {0, 1, 2, 3} and define a relation ≤ on P as follows.

b

b

b

b

1

2

33

0

Then (P,≤) is a poset and I = {0, 1} is a minimal strongly prime ideal of J = {0}.
But for 1 ∈ I\J, there is no y ∈ P\I and t ∈ U(1) such that L(L(t)∗, L(y)∗) ⊆ J .

�

Following [6], a semi-ideal I of P is called n-prime if for pairwise distinct ele-
ments x1, x2, x3, ..., xn ∈ P , if L(x1, x2, x3, ..., xn) ⊆ I, then at least (n − 1) of n
subsets L(x2, x3, x4, ..., xn), L(x1, x3, x4, ..., xn), ..., L(x1, x2, x3, ..., xn−1) is a subset
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of I. One can define in an obvious way the concept of n-strongly prime ideal of P
for n ≥ 2. As a special case, if I is strongly prime, then I is a 2-strongly prime
ideal. It might be hard to extend the results for n > 2. It is proved by the following
theorem that n-primeness can not be generalized for n > 2.

Theorem 2.4. Let I be an ideal of P . Then I has the following property that for
n > 2, if pairwise distinct ideals A1, A2, ..., An of P with L(A∗

1, A
∗
2, ..., A

∗
n) ⊆ I, then

at least (n−1) of n subsets L(A∗
2, A

∗
3, ..., A

∗
n), L(A

∗
1, A

∗
3, ..., A

∗
n), ..., L(A

∗
1, A

∗
2, ..., A

∗
n−1)

are subsets of I.

Proof. Let A1, A2, ..., An be distinct ideals of P with L(A∗
1, A

∗
2, ..., A

∗
n) ⊆ I. Suppose

that L(A∗
1, A

∗
2, ..., A

∗
n−1) * I. Then we now prove L(A∗

2, A
∗
3, ..., A

∗
n), L(A

∗
1, A

∗
3, ...,

A∗
n), ..., L(A

∗
1, A

∗
2, ..., A

∗
n−2, A

∗
n) are subsets of I. Since L(A

∗
1, A

∗
2, ..., A

∗
n−1) * I, then

there exists t ∈ L(A∗
1, A

∗
2, ..., A

∗
n−1)\I such that L(t) ⊆ L(A∗

1, A
∗
2, ..., A

∗
n−1), which

implies L(t, A∗
n) ⊆ I. So for each j ∈ {1, 2, 3, ..., n−1}, we have L(

n−1∪
i=1,i ̸=j

A∗
i , A

∗
n) ⊆

L(t, A∗
n) ⊆ I. �

In the generalization of n-primeness in posets, by the above theorem, we get
that the cases n = 2 and n ≥ 3 are substantially different. Hence a 2-strongly prime
ideal only exists in P . If n > 2, then every ideal of P is n-strongly prime.

Lemma 2.5. Let I be a semi-prime ideal of P with (*) condition. Then < C∗, I >
is a strongly prime ideal of P for any ideal C of P.

Proof. Let A,B and C be ideals of P with L(A∗, B∗) ⊆< C∗, I >. Then
L(A∗, B∗, C∗) ⊆ I. By Theorem 2.4, we have A ⊆< C∗, I > or B ⊆< C∗, I >.

/, �

Theorem 2.6. Let J ̸= {0} be an ideal of P . Then there are at most two strongly
prime ideals of P that are minimal over J .

Proof. Suppose that I1, I2 and I3 are three pairwise distinct strongly prime ide-
als of P that are minimal over J . Then there exist x1 ∈ I1\I2 and x2 ∈ I2\I1.
Since x1 ∈ I1 and by Theorem 2.2, there exist c2 /∈ I1 and t1 ∈ U(x1)
such that L(L(t1)

∗, L(c2)
∗) ⊆ J . Also for x2 ∈ I2, there exists c1 /∈ I2 and

t2 ∈ U(x2) such that L(L(t2)
∗, L(c1)

∗) ⊆ J . Then L(L(t2)
∗, L(c1)

∗) ⊆< x1, J >,
which implies L(L(t2)

∗, L(c1)
∗, L(x1)

∗) ⊆ J . Suppose L(L(x1)
∗, L(c1)

∗) ⊆ J .
Then L(L(x1)

∗, L(c1)
∗) ⊆ I2. Since I2 is a strongly prime ideal of P , we have

c1 ∈ L(c1) ⊆ I2 or x1 ∈ L(x1) ⊆ I2, a contradiction. By Theorem 2.4, we have
L(L(t2)

∗, L(c1)
∗) ⊆ J and L(L(t2)

∗, L(x1)
∗) ⊆ J . Clearly I1 * I2 ∪ I3, I2 * I1 ∪ I3

and I3 * I1 ∪ I2. Indeed, if I1 ⊆ I2 ∪ I3, then I∗1 ⊆ I∗2 ∪ I∗3 , which implies
L(I∗2 , I

∗
3 ) ⊆ I1. Since I1 is strongly prime, we have I2 ⊆ I1 or I3 ⊆ I1, a contradic-

tion. So we can choose y1 ∈ I1\(I2 ∪ I3); y2 ∈ I2\(I1 ∪ I3); y3 ∈ I3\(I2 ∪ I1). By the
above argument, we have L(L(t2)

∗, L(y1)
∗) ⊆ J ⊆ I3 for some t2 ∈ U(y2). Since I3

is strongly prime, we have y1 ∈ I3 or y2 ≤ t2 ∈ I3, a contradiction. So there are at
most two strongly prime ideal that are minimal over J . �
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Theorem 2.7. Let J ̸= {0} be an ideal of P . Then at least one of the following
statement must hold.

(i) SP (J) = I1 is a strongly prime ideal of P .

(ii) SP (J) = I1 ∩ I2, where I1 and I2 are the distinct strongly prime ideal of P
that are minimal over J . If J satisfies (*) condition, then L(I∗1 , I

∗
2 ) ⊆ J .

Proof. By Theorem 2.6, we have SP (J) = I1 is a strongly prime ideal of P or
SP (J) = I1∩I2, where I1 and I2 are the distinct strongly prime ideals of P that are
minimal over J . Since I1 and I2 are distinct, there exists x1 ∈ I1\I2 and x2 ∈ I2\I1.
By Theorem 2.2, there exist c2 /∈ I1 and t1 ∈ U(x) such that L(L(t1)

∗, L(c2)
∗) ⊆ J

and there exist c1 /∈ I2 and t2 ∈ U(x) such that L(L(t2)
∗, L(c1)

∗) ⊆ J . Then
L(L(t2)

∗, L(c1)
∗) ⊆< x1, J >, which implies L(L(t2)

∗, L(c1)
∗, L(x1)

∗) ⊆ J . Sup-
pose L(L(x1)

∗, L(c1)
∗) ⊆ J. Then L(L(x1)

∗, L(c1)
∗) ⊆ I2, so c1 ∈ L(c1) ⊆ I2 or

x1 ∈ L(x1) ⊆ I2, a contradiction. By Theorem 2.4, we have L(L(t2)
∗, L(c1)

∗) ⊆ J
and L(L(t2)

∗, L(x1)
∗) ⊆ J , which imply x1 ∈ L(x1)∗ ⊆< L(t2)

∗, J >⊆< x2, J > .
Thus L(x1, x2) ⊆ J and hence L(I∗1 , I

∗
2 ) ⊆ J . �

Theorem 2.8. Let J ̸= {0} be a semi-prime ideal of P such that J ̸= SP (J) = I
is a strongly prime ideal of P and J satisfies (*) condition. Then for each x ∈
I\J and I ⊆< x, J >, we have < x, J > is a strongly prime of P . Furthermore
< y, J >⊆< x, J > or < x, J >⊆< y, J > for every x, y ∈ I\J .
Proof. Let x ∈ I\J and I ⊂< x, J > with L(A∗, B∗) ⊆< x, J > for different proper
ideals A,B of P . If L(A∗, B∗) ⊆ I, then A ⊆< x, J > or B ⊆< x, J > . Let
L(A∗, B∗) * I. Since L(A∗, B∗) ⊆< x, J >, we have L(A∗, B∗, L(x)∗) ⊆ J. Then
by Theorem 2.4, we have L(A∗, L(x)∗) ⊆ J and L(B∗, L(x)∗) ⊆ J , which imply
A ⊆< x, J > and B ⊆< x, J >. So < x, J > is a strongly prime ideal of P .

Let x, y ∈ I\J. If < x, J > ̸⊂< y, J >, then there exists z ∈< x, J > with z /∈ I.
Let w ∈< y, J > . If w ∈ I/J , then < y, J >⊆< x, J >. Suppose w /∈ I. Then
L(L(z)∗, L(w)∗) * I. Since L(L(z)∗, L(x)∗) ⊆ J , we have L(L(z)∗, L(x)∗, L(w)∗) ⊆
J . By Theorem 2.4, we have L(L(z)∗, L(x)∗) ⊆ J and L(L(x)∗, L(w)∗) ⊆ J , which
imply w ∈< x, J >. �

Theorem 2.9. Let J ̸= {0} be a semi-prime ideal of P such that J ̸= SP (J) =
I1 ∩ I2, where I1, I2 are distinct strongly prime ideals of P that are minimal over J
and J satisfies (*) condition. Then for each x ∈ SP (J)\J and SP (J) ⊆< x, J >,
we have < x, J > is a strongly prime of P containing I1 and I2. Furthermore either
< y, J >⊆< x, J > or < x, J >⊆< y, J > for every x, y ∈ SP (J)\J .
Proof. Let x ∈ (I1 ∩ I2)\J . Then by Theorem 2.7, L(I∗1 , I

∗
2 ) ⊆ J , which implies

I1 ⊆< x, J > and I2 ⊆< x, J >. Let L(A∗, B∗) ⊆< x, J > for some different
ideals A,B of P . If A,B ⊆ I1 or A,B ⊆ I2, then I1 ⊆< x, J > or I2 ⊆< x, J > .
If A,B * I1 or A,B * I2, then L(A∗, B∗) * J. Since L(A∗, B∗) ⊆< x, J >,
we have L(A∗, B∗, L(x)∗) ⊆ J. By Theorem 2.4, we have L(A∗, L(x)∗) ⊆ J and
L(B∗, L(x)∗) ⊆ J . Hence A ⊆< x, J > and B ⊆< x, J >. It follows from Theorem
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2.8 that either < y, J >⊆< x, J > or < x, J >⊆< y, J > for every x, y ∈ SP (J)\J .
/,�

Following [4] and [5], for an ideal I of P , an element x ∈ P is called prime to I
if < x, I >= I. A proper ideal I of P is called primal if the set S(I) = {x ∈ P : x
is not prime to I} is an ideal of P and it is called the adjoint set of I. It is clear
that for any ideal I of P , I ⊆ S(I) and S(I) is a semi-ideal of P , but S(I) is not
necessarily to be an ideal of P as shows in the following example.

Example 2.10. Consider P = {0, a, b, c, d} and define the partial relation ≤ on P
as follows

b

b

b

b

b
0

c

b

d

a

Then (P,≤) is a poset and I = {0} is an ideal of P . Here S(I) = {0, a, b, c} is
a semi-ideal of P , but not an ideal of P as L(U(b, c)) = {0, a, b, c, d} * S(I). �

If I is a proper ideal of P , then I = S(I) ([9], Theorem 20), so every proper
prime ideal of P is primal. But Example 2.11 shows that there exists a primal ideal
of P which is not necessarily to be prime.

Example 2.11. Consider P = {0, a, b, c} and define a relation ≤ on P as follows.

b

b

b

b

0

b

c

a

Then (P,≤) is a poset with a primal ideal I = {0}. Here I is not a prime ideal
of P . �

Following [7], a proper ideal I of P is called irreducible if for any ideals J and
K of P, I = J ∩K implies J = I or K = I.

Lemma 2.12. Every prime ideal of a poset P is irreducible.
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Proof. Let I be a prime ideal of P such that I = J ∩K for some ideals J and K of
P . Then I ⊆ J and I ⊆ K. Suppose I ̸= J and I ̸= K. Then there exist x, y ∈ P
such that x ∈ J\I and y ∈ K\I, which imply L(x, y) ⊆ J ∩K ⊆ I, so either x ∈ I
or y ∈ I, a contradiction. �

In Example 2.10, I = {0, a} is an irreducible ideal of P , but not primal. So the
converse of Lemma is not true in general. But we have the following.

Theorem 2.13. Every irreducible semi-prime ideal of P is primal.

Proof. Let I be an irreducible semi-prime ideal of P and x1, x2 ∈ S(I). Then
I ⊂< x1, I > ∩ < x2, I > and there exists a ∈ (< x1, I > ∩ < x2, I >)\I such that
L(a, x1) ⊆ I and L(a, x2) ⊆ I. Since I is semi-prime, we have L(a, U(x1, x2)) ⊆ I.
So for any t ∈ L(U(x1, x2)), we have L(a, t) ⊆ I. �

For any ideal I of P , if S(I) is a strongly prime ideal of P , then I is called a
S-primal ideal of P . Following [2], for an ideal I and a strongly prime ideal Q of

P , we define IQ = {x ∈ P : L(s, x) ⊆ I for some s ∈ P\Q} =
∪

s∈P\Q

< s, I >.

Lemma 2.14 Let I be a Q-primal ideal of P with (*) condition. Then < x, I >Q=<
x, IQ >.

Proof. Let y ∈< x, I >Q. Then there exists c /∈ Q such that L(y, c) ⊆< x, I >,
which implies L(x, t) ⊆ I for all t ∈ L(y, c). Since t ∈ L(y), we have L(L(y), x) ⊆
L(t, x) ⊆ I ⊆ IQ. Then y ∈< x, IQ >. Let a ∈< x, IQ >. Then L(x, a) ⊆ IQ,
which implies c /∈ Q such that L(t, c) ⊆ I for all t ∈ L(x, a). Since c /∈ Q, we have
t ∈< c, I >= I. Hence a ∈< x, I >Q. �
Theorem 2.15. Let I be a Q1-primal ideal of P . Then

(i) If Q2 is a strongly prime ideal of P containing Q1, then IQ2 = I.

(ii) If Q2 is a strongly prime ideal of P not containing Q1, then IQ2
⊃ I

(iii) If IQ2 is a Q2-primal ideal for some strongly prime ideal Q2 containing I and
I satisfies (*) condition, then Q2 ⊆ Q1.

Proof. (i) Let x ∈ IQ2 . Then there exists c /∈ Q2 such that L(x, c) ⊆ I, which
implies c /∈ Q1 with L(x, c) ⊆ I. Since I is Q1-primal and c /∈ Q1, we have c is
prime to I. So x ∈< c, I >= I.
(ii) Let x ∈ Q1\Q2. Then x is not prime to I and for some y /∈ I, we have
L(x, y) ⊆ I. Since x /∈ Q2, we have y ∈ IQ2 . But y /∈ I. Hence I ⊂ IQ2 .
(iii) Suppose Q2 is not a subset of Q1. Then there exists q ∈ Q2\Q1 such that
L(q, x) ⊆ IQ2 for some x ∈ P\IQ2 , which implies c ∈ P\Q2 such that L(t, c) ⊆ I for
all t ∈ L(q, x). Since t ∈ L(x), we have L(L(x), c) ⊆ L(t, c) ⊆ I. However c /∈ Q2,
so that x ∈ IQ2 , a contradiction. �

We now present more properties of primal ideals in a poset by using the following
definition. For an ideal I of a poset P , the notation C(I) = {x ∈ P\I : L(x, y) ⊆ I
for some y ∈ P\I}. If I is strongly prime, then C(I) = ∅.
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Lemma 2.16. Let I be a proper ideal of P . Then the following hold.

(i) I ⊆ S, where S is the adjoint set of I.

(ii) C(I) = S\I.

Proof. (i) Let x ∈ I. Then L(x, y) ⊆ I with y /∈ I, which implies x is not prime to
I. So x ∈ S.
(ii) Let r ∈ C(I). Then r /∈ I and L(x, r) ⊆ I for some x /∈ I, which imply r ∈ S.
Since r /∈ I, we have C(I) ⊆ S\I. Conversely, let a ∈ S\I. Then there exists y /∈ I
such that L(a, y) ⊆ I. So a ∈ C(I). Hence C(I) = S\I. �
Theorem 2.17. Let I and J be proper ideals of P with I ⊆ J . Then I is a J-primal
ideal of P if and only if C(I) = J\I.
Proof. Let I be a J-primal ideal of P . Then by Lemma , we have C(I) = S\I = J\I.
Let C(I) = J\I. Then it is enough to prove that J is exactly the set of elements
that are not prime to I. Let c ∈ J . If c ∈ I, then < c, I >= P ̸= I. So c is not
prime to I. If c ∈ J\I = C(I), then there exists z /∈ I such that L(z, c) ⊆ I. It
gives c is not prime to I. Suppose x /∈ J and x is not prime to I. Then there exists
t /∈ I such that L(x, t) ⊆ I, which implies x ∈ C(I) = J\I, a contradiction. We
now prove that J is strongly prime. It is enough to prove that S(J) = J . Clearly
J ⊆ S(J). Let t ∈ S(J). If t ∈ I, then t ∈ S(J). If t /∈ I, then there exists s /∈ I
such that L(s, t) ⊆ I, which implies s ∈ C(I) = J\I ⊆ J . Hence I is a J-primal
ideal of P . �
Corollary 2.18. Let I be an ideal of P . Then I is a primal ideal of P if and only
if C(I) ∪ I is an ideal (prime ideal) of P .

Corollary 2.19. Let I and J be Q-primal ideals of P . Then C(I) = C(J) if and
only if I = J .

Lemma 2.20. Let I be an ideal of P with (*) condition. Then I is strongly semi
prime of P if and only if < t, I > is a strongly semi-prime ideal of P for any t ∈ P .

Proof. It follows directly from Theorem 2.7 of [3]. �
Theorem 2.21. Let J ̸= {0} be a strongly semi-prime ideal of P such that J ̸=
SP (J) ⊆< x, J > for x ∈ SP (J)\J and J satisfies (*) condition. Then J is a

Q-primal ideal of P , where Q =
∪

x∈SP (J)\J

< x, J >.

Proof It is clear that J ⊆ Q. We now prove that all elements of Q are not prime to
J . Let a, b ∈ P\J such that L(a, b) ⊆ J . It is enough to prove a, b ∈< t, J > for
some t ∈ SP (J)\J . By Theorem 2.7, we have SP (J) = I is a strongly prime ideal
of P or SP (J) = I1∩ I2, where I1 and I2 are the only distinct strongly prime ideals
of P that are minimal over J .

If SP (J) = I is a strongly prime ideal of P , then either a ∈ I\J or b ∈ I\J .
By Theorem 2.8, we have < a, J >⊆< b, J > or < b, J >⊆< a, J >, which implies
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a, b ∈< a, J > or a, b ∈< b, J > . Then D = {< t, J >: t ∈ SP (J)\J} is a
linearly ordered set of ideals and by Lemma , they are strongly semi-prime ideals.
Following Theorem 2.8 of [3] and by Zorn’s lemma, there exists a strongly prime

ideal Q =
∪

x∈SP (J)\J

< x, J > of P .

If SP (J) = I1 ∩ I2, where I1 and I2 are the only distinct strongly prime ideals
of P that are minimal over J , then either a ∈ SP (J)\I or a ∈ I1\I2 and b ∈ I2\I1.
If a ∈ SP (J)\J , then a, b ∈< a, J >. Suppose that a ∈ I1\I2 and b ∈ I2\I1.
Since J ̸= SP (J), there exists d ∈ SP (J)\J . By Theorem 2.9, I∗1 ⊆< d, J > and
I∗2 ⊆< d, J >, which imply a, b ∈< d, J >. Then D = {< d, J >: d ∈ SP (J)\J} is
a linearly ordered set of strongly semi-prime ideals. By Zorn’s lemma and Theorem

2.8 of [3], there exists a strongly prime ideal Q =
∪

x∈SP (J)\J

< x, J > of P . �
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