KYUNGPOOK Math. J. 56(2016), 727-735 http://dx.doi.org/10.5666/KMJ.2016.56.3.727 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Strongly Prime Ideals and Primal Ideals in Posets

CATHERINE GRACE JOHN AND BALASUBRAMANIAN ELAVARASAN* Department of Mathematics, Karunya University, Coimbatore-641114, Tamil Nadu, India.

e-mail: catherine@karunya.edu and belavarasan@gmail.com

ABSTRACT. In this paper, we study and establish some interesting results of ideals in a poset. It is shown that for a nonzero ideal I of a poset P, there are at most two strongly prime ideals of P that are minimal over I. Also, we study the notion of primal ideals in a poset and the relationship among the primal ideals and strongly prime ideals is considered.

1. Introduction

Throughout this paper (P, \leq) denotes a poset with smallest element 0. For basic terminology and notation for posets, we refer [9] and [6]. For $M \subseteq P$, let $L(M) = \{x \in P : x \leq m \text{ for all } m \in M\}$ denote the lower cone of M in P and dually, let $U(M) = \{x \in P : m \leq x \text{ for all } m \in M\}$ be the upper cone of M in P. Let $A, B \subseteq P$, we shall write L(A, B) instead of $L(A \cup B)$ and dually for the upper cones. If $M = \{x_1, x_2, ..., x_n\}$ is finite, then we use the notation $L(x_1, x_2, ..., x_n)$ instead of $L(\{x_1, x_2, ..., x_n\})$ (and dually). It is clear that for any subset A of P, we have $A \subseteq L(U(A))$ and $A \subseteq U(L(A))$. If $A \subseteq B$, then $L(B) \subseteq L(A)$ and $U(B) \subseteq U(A)$. Moreover, LUL(A) = L(A) and ULU(A) = U(A). Following [10], a non-empty subset I of P is called a semi-ideal if $b \in I$ and $a \leq b$, then $a \in I$. A subset I of P is called an ideal if $a, b \in I$ implies $L(U((a, b)) \subseteq I[9])$. Following [8], for any subset X of P, [X] is the smallest ideal of P containing X. If $X = \{b\}$, then L(b) is called the principle ideal of P generated by b. A proper semi-ideal (ideal) I of P is called prime if $L(a,b) \subseteq I$ implies that either $a \in I$ or $b \in I$ [6]. An ideal I of a poset P is called semi-prime if $L(a, b) \subseteq I$ and $L(a, c) \subseteq I$ together imply $L(a, U(b, c))) \subseteq I[9]$. Following [3], an ideal I of P is called strongly prime if $L(A^*, B^*) \subseteq I$ implies that either $A \subseteq I$ or $B \subseteq I$ for different proper ideals A, B of P, where $A^* = A \setminus \{0\}$. A

Received July 23, 2015; revised March 21, 2016; accepted April 7, 2016.

2010 Mathematics Subject Classification: 06A06.

Key words and phrases: Poset, ideals, strongly prime ideal, primal ideal, minimal prime ideal.

^{*} Corresponding Author.

non-empty subset M of P is called an m-system if for any $x_1, x_2 \in M$, there exists $t \in L(x_1, x_2)$ such that $t \in M$. Following [1], a non-empty subset M of P is called a strongly m-system if $A \cap M \neq \emptyset$ and $B \cap M \neq \emptyset$ imply $L(A^*, B^*) \cap M \neq \emptyset$ for different proper ideals A, B of P. It is clear that an ideal I of P is strongly prime if and only if P/I is a strongly m-system of P. Also every strongly m-system of P is an m-system. Following [3], an ideal I of P is called strongly semi-prime if $L(A^*, B^*) \subseteq I$ and $L(A^*, C^*) \subseteq I$ together imply $L(A^*, U(B^*, C^*)) \subseteq I$ for any different ideals A, B and C of P. For any semi-ideal I of P and a subset A of P, we define $\langle A, I \rangle = \{z \in P : L(a, z) \subseteq I \text{ for all } a \in A\} = \bigcap_{x \in A} \langle a, I \rangle [3]$. If $A = \{x\}$,

then we write $\langle x, I \rangle$ instead of $\langle \{x\}, I \rangle$. For any ideal I of P, a strongly prime ideal Q of P is said to be a minimal strongly prime ideal of I if $I \subseteq Q$ and there exists no strongly prime ideal R of P such that $I \subset R \subset Q$. The set of all strongly prime ideals of P is denoted by Sspec(P) and the set of minimal strongly prime ideals of P is denoted by Smin(P). For any ideal I of P, P(I) and SP(I) denotes the intersection of all prime semi-ideals and strongly prime ideals of P containing I. It is clear from Theorem 6 of [6] and Example 1.1 of [2] that P(I) = I and $SP(I) \neq I$ for any ideal I of P. Following [1], let I be a semi-ideal of P. Then I is said to have (*) condition if whenever $L(A, B) \subseteq I$, we have $A \subseteq \langle B, I \rangle$ for any subsets A and B of P.

2. Main Results

Theorem 2.1. Let M be a nonempty strongly m-system of P and J be an ideal of P with $J \cap M = \emptyset$. Then J is contained in a strongly prime ideal I of P with $I \cap M = \emptyset$.

Proof. Let $S = \{K : K \text{ is an ideal of } P \text{ with } K \cap M = \emptyset\}$. Then $S \neq \emptyset$ and by Zorn's lemma, there exists a maximal element $I \in S$ with $I \cap M = \emptyset$. Let Aand B be ideals of P with $L(A^*, B^*) \subseteq I$ and suppose that $A \nsubseteq I$ and $B \nsubseteq I$. Then there exists $x \in A \setminus I$ and $y \in B \setminus I$ such that $I \subset I \cup \{x\} \subseteq [I \cup \{x\}]$ and $I \subset I \cup \{y\} \subseteq [I \cup \{y\}]$, which imply $[I \cup \{x\}] \cap M \neq \emptyset$ and $[I \cup \{y\}] \cap M \neq \emptyset$. Since M is strongly m-system, we have $L([I \cup \{x\}]^*, [I \cup \{y\}]^*) \cap M \neq \emptyset$. But $L([I \cup \{x\}]^*, [I \cup \{y\}]^*) \subseteq L([I \cup \{x\}]^*) \subseteq L(I^*) \subseteq I$, which implies $I \cap M \neq \emptyset$, a contradiction. \Box

Theorem 2.2. Let I and J be ideals of P with $\{0\} \neq J \subseteq I$. Then the following are equivalent.

- (i) I is a minimal strongly prime ideal of J.
- (ii) For each $x \in I$, there exists $t \in U(x)$ and $y \in P \setminus I$ such that $L(L(t)^*, L(y)^*) \subseteq J$.
- (iii) If I has (*) condition, then for any $x \in I$, we have $\langle x, J \rangle \not\subseteq I$.

Proof. (i) \Rightarrow (ii) Let I be a minimal strongly prime ideal of J. Suppose that there exists $x \in I$ such that $L(L(t_i)^*, L(y_j)^*) \notin J$ for all $t_i \in U(x)$ and $y_j \in P \setminus I$. Let

$$\begin{split} M &= \{a_{ij} : a_{ij} \in L(L(t_i)^*, L(y_j)^*) \setminus J \text{ for } t_i \in U(x) \text{ and } y_j \in P \setminus I\}. \text{ Then } M \neq \emptyset. \\ \text{For any ideals } A, B \text{ of } P, \text{ let } A \cap M \neq \emptyset \text{ and } B \cap M \neq \emptyset. \text{ Then there exists } a \in A \\ \text{and } b \in B \text{ such that } a, b \in M. \text{ Let } t \in L(A^*, B^*). \text{ Then } t \in L(a, b). \text{ Since } a, b \in M, \\ \text{we have } a \in L(L(t_i)^*, L(y_j)^*) \setminus J \text{ and } b \in L(L(t_k)^*, L(y_l)^*) \setminus J \text{ for some } t_i, t_k \in U(x) \\ \text{and } y_j, y_l \in P \setminus I, \text{ which imply } t \in L(L(t_i)^*, L(y_j)^*) \text{ with } t \notin J. \text{ Indeed, if } t \in J, \\ \text{then } a \in L(L(t_i)^*) \subseteq L(t) \subseteq J, \text{ a contradiction. So } M \text{ is a strongly } m\text{-system of } \\ P. \text{ Since } M \cap J = \emptyset \text{ and by Theorem , there exists a strongly prime ideal } I_1 \text{ of } \\ P \text{ containing } J \text{ with } I_1 \cap M = \emptyset. \text{ If } x \in I_1, \text{ then } L(L(x)^*, L(y_i)^*) \subseteq I_1 \text{ for every } \\ y_i \in P \setminus I. \text{ But there exists } q \in L(L(t_i)^*, L(y_j)^*) \setminus J \text{ with } q \in M, \text{ which implies } \\ q \in L(L(t_i)^*, L(y_j)^*) \subseteq L(L(x)^*, L(y_i)^*) \subseteq I_1 \text{ and } I_1 \cap M \neq \emptyset, \text{ a contradiction. So } \\ x \notin I_1. \text{ Let } i_1 \in I_1 \text{ and suppose } i_1 \notin I. \text{ Then } i_1 \in P \setminus I \text{ and } L(L(x)^*, L(i_1)^*) \subseteq I_1. \\ \text{But } L(L(t_i)^*, L(i_1)^*) \notin J, \text{ which implies } I_1 \cap M \neq \emptyset, \text{ a contradiction. Thus } I_1 \subset I, \\ \text{ which is again a contradiction to the minimality of } I. \end{split}$$

 $(\mathbf{ii}) \Rightarrow (\mathbf{i})$ Let I_1 be a strongly prime ideal of P with $J \subseteq I_1 \subseteq I$. Let $x \in I$. Then there exists $y \in P \setminus I$ and $t \in U(x)$ such that $L(L(t)^*, L(y)^*) \subseteq J \subseteq I_1$. Since $y \notin I_1$, we have $L(t) \subseteq I_1$, which implies $x \leq t \in I_1$. Thus $I \subseteq I_1$ and hence I is a minimal strongly prime ideal of J.

(i) \Rightarrow (iii) Let $x \in I$. Then by (ii), there exists $y \notin I$ and $t \in U(x)$ such that $L(L(t)^*, L(y)^*) \subseteq J$. Since J satisfies (*) condition, we have $y \in L(y)^* \subseteq < L(t)^*, J > \subseteq < x, J >$, which implies $< x, J > \nsubseteq I$.

(iii) \Rightarrow (i) Let Q be a strongly prime ideal of P such that $J \subseteq Q \subset I$ and $x \in I \setminus Q$. Then $\langle x, J \rangle \not\subseteq I$. So there exists $y \in \langle x, J \rangle \setminus I$ such that $L(L(x)^*, L(y)^*) \subseteq L(x, y) \subseteq J \subseteq Q$. Since $L(x) \not\subseteq Q$, we have $y \in Q$, a contradiction.

The following example shows that the condition $J \neq \{0\}$ is not superficial in Theorem 2.2.

Example 2.3. Consider $P = \{0, 1, 2, 3\}$ and define a relation \leq on P as follows.

Then (P, \leq) is a poset and $I = \{0, 1\}$ is a minimal strongly prime ideal of $J = \{0\}$. But for $1 \in I \setminus J$, there is no $y \in P \setminus I$ and $t \in U(1)$ such that $L(L(t)^*, L(y)^*) \subseteq J$.

Following [6], a semi-ideal I of P is called n-prime if for pairwise distinct elements $x_1, x_2, x_3, ..., x_n \in P$, if $L(x_1, x_2, x_3, ..., x_n) \subseteq I$, then at least (n-1) of n subsets $L(x_2, x_3, x_4, ..., x_n), L(x_1, x_3, x_4, ..., x_n), ..., L(x_1, x_2, x_3, ..., x_{n-1})$ is a subset

of I. One can define in an obvious way the concept of n-strongly prime ideal of P for $n \geq 2$. As a special case, if I is strongly prime, then I is a 2-strongly prime ideal. It might be hard to extend the results for n > 2. It is proved by the following theorem that n-primeness can not be generalized for n > 2.

Theorem 2.4. Let I be an ideal of P. Then I has the following property that for n > 2, if pairwise distinct ideals $A_1, A_2, ..., A_n$ of P with $L(A_1^*, A_2^*, ..., A_n^*) \subseteq I$, then at least (n-1) of n subsets $L(A_2^*, A_3^*, ..., A_n^*), L(A_1^*, A_3^*, ..., A_n^*), ..., L(A_1^*, A_2^*, ..., A_{n-1}^*)$ are subsets of I.

Proof. Let $A_1, A_2, ..., A_n$ be distinct ideals of P with $L(A_1^*, A_2^*, ..., A_n^*) \subseteq I$. Suppose that $L(A_1^*, A_2^*, ..., A_{n-1}^*) \not\subseteq I$. Then we now prove $L(A_2^*, A_3^*, ..., A_n^*), L(A_1^*, A_3^*, ..., A_n^*)$ $A_n^*), ..., L(A_1^*, A_2^*, ..., A_{n-2}^*, A_n^*)$ are subsets of *I*. Since $L(A_1^*, A_2^*, ..., A_{n-1}^*) \not\subseteq I$, then there exists $t \in L(A_1^*, A_2^*, ..., A_{n-1}^*) \setminus I$ such that $L(t) \subseteq L(A_1^*, A_2^*, ..., A_{n-1}^*)$, which

implies $L(t, A_n^*) \subseteq I$. So for each $j \in \{1, 2, 3, ..., n-1\}$, we have $L(\bigcup_{i=1, i \neq j} A_i^*, A_n^*) \subseteq I$.

 $L(t, A_n^*) \subseteq I.$

In the generalization of n-primeness in posets, by the above theorem, we get that the cases n = 2 and $n \ge 3$ are substantially different. Hence a 2-strongly prime ideal only exists in P. If n > 2, then every ideal of P is n-strongly prime.

Lemma 2.5. Let I be a semi-prime ideal of P with (*) condition. Then $\langle C^*, I \rangle$ is a strongly prime ideal of P for any ideal C of P.

Proof. Let A, B and C be ideals of P with $L(A^*, B^*) \subseteq C^*, I > C^*$. Then $L(A^*, B^*, C^*) \subseteq I$. By Theorem 2.4, we have $A \subseteq C^*, I > \text{or } B \subseteq C^*, I >$. /,

Theorem 2.6. Let $J \neq \{0\}$ be an ideal of P. Then there are at most two strongly prime ideals of P that are minimal over J.

Proof. Suppose that I_1, I_2 and I_3 are three pairwise distinct strongly prime ideals of P that are minimal over J. Then there exist $x_1 \in I_1 \setminus I_2$ and $x_2 \in I_2 \setminus I_1$. Since $x_1 \in I_1$ and by Theorem 2.2, there exist $c_2 \notin I_1$ and $t_1 \in U(x_1)$ such that $L(L(t_1)^*, L(c_2)^*) \subseteq J$. Also for $x_2 \in I_2$, there exists $c_1 \notin I_2$ and $t_2 \in U(x_2)$ such that $L(L(t_2)^*, L(c_1)^*) \subseteq J$. Then $L(L(t_2)^*, L(c_1)^*) \subseteq \langle x_1, J \rangle$, which implies $L(L(t_2)^*, L(c_1)^*, L(x_1)^*) \subseteq J$. Suppose $L(L(x_1)^*, L(c_1)^*) \subseteq J$. Then $L(L(x_1)^*, L(c_1)^*) \subseteq I_2$. Since I_2 is a strongly prime ideal of P, we have $c_1 \in L(c_1) \subseteq I_2$ or $x_1 \in L(x_1) \subseteq I_2$, a contradiction. By Theorem 2.4, we have $L(L(t_2)^*, L(c_1)^*) \subseteq J$ and $L(L(t_2)^*, L(x_1)^*) \subseteq J$. Clearly $I_1 \nsubseteq I_2 \cup I_3, I_2 \nsubseteq I_1 \cup I_3$ and $I_3 \nsubseteq I_1 \cup I_2$. Indeed, if $I_1 \subseteq I_2 \cup I_3$, then $I_1^* \subseteq I_2^* \cup I_3^*$, which implies $L(I_2^*, I_3^*) \subseteq I_1$. Since I_1 is strongly prime, we have $I_2 \subseteq I_1$ or $I_3 \subseteq I_1$, a contradiction. So we can choose $y_1 \in I_1 \setminus (I_2 \cup I_3); y_2 \in I_2 \setminus (I_1 \cup I_3); y_3 \in I_3 \setminus (I_2 \cup I_1)$. By the above argument, we have $L(L(t_2)^*, L(y_1)^*) \subseteq J \subseteq I_3$ for some $t_2 \in U(y_2)$. Since I_3 is strongly prime, we have $y_1 \in I_3$ or $y_2 \leq t_2 \in I_3$, a contradiction. So there are at most two strongly prime ideal that are minimal over J.

Theorem 2.7. Let $J \neq \{0\}$ be an ideal of P. Then at least one of the following statement must hold.

- (i) $SP(J) = I_1$ is a strongly prime ideal of P.
- (ii) SP(J) = I₁ ∩ I₂, where I₁ and I₂ are the distinct strongly prime ideal of P that are minimal over J. If J satisfies (*) condition, then L(I₁^{*}, I₂^{*}) ⊆ J.

Proof. By Theorem 2.6, we have $SP(J) = I_1$ is a strongly prime ideal of P or $SP(J) = I_1 \cap I_2$, where I_1 and I_2 are the distinct strongly prime ideals of P that are minimal over J. Since I_1 and I_2 are distinct, there exists $x_1 \in I_1 \setminus I_2$ and $x_2 \in I_2 \setminus I_1$. By Theorem 2.2, there exist $c_2 \notin I_1$ and $t_1 \in U(x)$ such that $L(L(t_1)^*, L(c_2)^*) \subseteq J$ and there exist $c_1 \notin I_2$ and $t_2 \in U(x)$ such that $L(L(t_2)^*, L(c_1)^*) \subseteq J$. Then $L(L(t_2)^*, L(c_1)^*) \subseteq J$. Suppose $L(L(x_1)^*, L(c_1)^*) \subseteq J$. Then $L(L(x_1)^*, L(c_1)^*) \subseteq I_2$, a contradiction. By Theorem 2.4, we have $L(L(t_2)^*, L(c_1)^*) \subseteq J$ and $L(L(t_2)^*, L(x_1)^*) \subseteq J$, which imply $x_1 \in L(x_1)^* \subseteq L(t_2)^*, J \geq (x_2, J >)$. Thus $L(x_1, x_2) \subseteq J$ and hence $L(I_1^*, I_2^*) \subseteq J$. □

Theorem 2.8. Let $J \neq \{0\}$ be a semi-prime ideal of P such that $J \neq SP(J) = I$ is a strongly prime ideal of P and J satisfies (*) condition. Then for each $x \in I \setminus J$ and $I \subseteq \langle x, J \rangle$, we have $\langle x, J \rangle$ is a strongly prime of P. Furthermore $\langle y, J \rangle \subseteq \langle x, J \rangle$ or $\langle x, J \rangle \subseteq \langle y, J \rangle$ for every $x, y \in I \setminus J$.

Proof. Let $x \in I \setminus J$ and $I \subset \langle x, J \rangle$ with $L(A^*, B^*) \subseteq \langle x, J \rangle$ for different proper ideals A, B of P. If $L(A^*, B^*) \subseteq I$, then $A \subseteq \langle x, J \rangle$ or $B \subseteq \langle x, J \rangle$. Let $L(A^*, B^*) \notin I$. Since $L(A^*, B^*) \subseteq \langle x, J \rangle$, we have $L(A^*, B^*, L(x)^*) \subseteq J$. Then by Theorem 2.4, we have $L(A^*, L(x)^*) \subseteq J$ and $L(B^*, L(x)^*) \subseteq J$, which imply $A \subseteq \langle x, J \rangle$ and $B \subseteq \langle x, J \rangle$. So $\langle x, J \rangle$ is a strongly prime ideal of P.

Let $x, y \in I \setminus J$. If $\langle x, J \rangle \not\subset \langle y, J \rangle$, then there exists $z \in \langle x, J \rangle$ with $z \notin I$. Let $w \in \langle y, J \rangle$. If $w \in I/J$, then $\langle y, J \rangle \subseteq \langle x, J \rangle$. Suppose $w \notin I$. Then $L(L(z)^*, L(w)^*) \not\subseteq I$. Since $L(L(z)^*, L(x)^*) \subseteq J$, we have $L(L(z)^*, L(w)^*) \subseteq J$. By Theorem 2.4, we have $L(L(z)^*, L(x)^*) \subseteq J$ and $L(L(x)^*, L(w)^*) \subseteq J$, which imply $w \in \langle x, J \rangle$.

Theorem 2.9. Let $J \neq \{0\}$ be a semi-prime ideal of P such that $J \neq SP(J) = I_1 \cap I_2$, where I_1, I_2 are distinct strongly prime ideals of P that are minimal over J and J satisfies (*) condition. Then for each $x \in SP(J) \setminus J$ and $SP(J) \subseteq \langle x, J \rangle$, we have $\langle x, J \rangle$ is a strongly prime of P containing I_1 and I_2 . Furthermore either $\langle y, J \rangle \subseteq \langle x, J \rangle$ or $\langle x, J \rangle \subseteq \langle y, J \rangle$ for every $x, y \in SP(J) \setminus J$.

Proof. Let $x \in (I_1 \cap I_2) \setminus J$. Then by Theorem 2.7, $L(I_1^*, I_2^*) \subseteq J$, which implies $I_1 \subseteq < x, J >$ and $I_2 \subseteq < x, J >$. Let $L(A^*, B^*) \subseteq < x, J >$ for some different ideals A, B of P. If $A, B \subseteq I_1$ or $A, B \subseteq I_2$, then $I_1 \subseteq < x, J >$ or $I_2 \subseteq < x, J >$. If $A, B \nsubseteq I_1$ or $A, B \nsubseteq I_2$, then $L(A^*, B^*) \nsubseteq J$. Since $L(A^*, B^*) \subseteq < x, J >$, we have $L(A^*, B^*, L(x)^*) \subseteq J$. By Theorem 2.4, we have $L(A^*, L(x)^*) \subseteq J$ and $L(B^*, L(x)^*) \subseteq J$. Hence $A \subseteq < x, J >$ and $B \subseteq < x, J >$. It follows from Theorem

2.8 that either $\langle y, J \rangle \subseteq \langle x, J \rangle$ or $\langle x, J \rangle \subseteq \langle y, J \rangle$ for every $x, y \in SP(J) \backslash J$. /, \Box

Following [4] and [5], for an ideal I of P, an element $x \in P$ is called *prime* to I if $\langle x, I \rangle = I$. A proper ideal I of P is called *primal* if the set $S(I) = \{x \in P : x \text{ is not prime to } I\}$ is an ideal of P and it is called *the adjoint* set of I. It is clear that for any ideal I of P, $I \subseteq S(I)$ and S(I) is a semi-ideal of P, but S(I) is not necessarily to be an ideal of P as shows in the following example.

Example 2.10. Consider $P = \{0, a, b, c, d\}$ and define the partial relation \leq on P as follows

Then (P, \leq) is a poset and $I = \{0\}$ is an ideal of P. Here $S(I) = \{0, a, b, c\}$ is a semi-ideal of P, but not an ideal of P as $L(U(b, c)) = \{0, a, b, c, d\} \not\subseteq S(I)$. \Box

If I is a proper ideal of P, then I = S(I) ([9], Theorem 20), so every proper prime ideal of P is primal. But Example 2.11 shows that there exists a primal ideal of P which is not necessarily to be prime.

Example 2.11. Consider $P = \{0, a, b, c\}$ and define a relation \leq on P as follows.

Then (P, \leq) is a poset with a primal ideal $I = \{0\}$. Here I is not a prime ideal of P.

Following [7], a proper ideal I of P is called irreducible if for any ideals J and K of P, $I = J \cap K$ implies J = I or K = I.

Lemma 2.12. Every prime ideal of a poset P is irreducible.

Proof. Let I be a prime ideal of P such that $I = J \cap K$ for some ideals J and K of P. Then $I \subseteq J$ and $I \subseteq K$. Suppose $I \neq J$ and $I \neq K$. Then there exist $x, y \in P$ such that $x \in J \setminus I$ and $y \in K \setminus I$, which imply $L(x, y) \subseteq J \cap K \subseteq I$, so either $x \in I$ or $y \in I$, a contradiction.

In Example 2.10, $I = \{0, a\}$ is an irreducible ideal of P, but not primal. So the converse of Lemma is not true in general. But we have the following.

Theorem 2.13. Every irreducible semi-prime ideal of P is primal.

Proof. Let I be an irreducible semi-prime ideal of P and $x_1, x_2 \in S(I)$. Then $I \subset \langle x_1, I \rangle \cap \langle x_2, I \rangle$ and there exists $a \in (\langle x_1, I \rangle \cap \langle x_2, I \rangle) \setminus I$ such that $L(a, x_1) \subseteq I$ and $L(a, x_2) \subseteq I$. Since I is semi-prime, we have $L(a, U(x_1, x_2)) \subseteq I$. So for any $t \in L(U(x_1, x_2))$, we have $L(a, t) \subseteq I$. \Box

For any ideal I of P, if S(I) is a strongly prime ideal of P, then I is called a *S-primal* ideal of P. Following [2], for an ideal I and a strongly prime ideal Q of P, we define $I_Q = \{x \in P : L(s, x) \subseteq I \text{ for some } s \in P \setminus Q\} = \bigcup_{s \in P \setminus Q} \langle s, I \rangle$.

Lemma 2.14 Let I be a Q-primal ideal of P with (*) condition. Then $\langle x, I \rangle_Q = \langle x, I_Q \rangle$.

Proof. Let $y \in \langle x, I \rangle_Q$. Then there exists $c \notin Q$ such that $L(y,c) \subseteq \langle x, I \rangle$, which implies $L(x,t) \subseteq I$ for all $t \in L(y,c)$. Since $t \in L(y)$, we have $L(L(y),x) \subseteq L(t,x) \subseteq I \subseteq I_Q$. Then $y \in \langle x, I_Q \rangle$. Let $a \in \langle x, I_Q \rangle$. Then $L(x,a) \subseteq I_Q$, which implies $c \notin Q$ such that $L(t,c) \subseteq I$ for all $t \in L(x,a)$. Since $c \notin Q$, we have $t \in \langle c, I \rangle = I$. Hence $a \in \langle x, I \rangle_Q$.

Theorem 2.15. Let I be a Q_1 -primal ideal of P. Then

- (i) If Q_2 is a strongly prime ideal of P containing Q_1 , then $I_{Q_2} = I$.
- (ii) If Q_2 is a strongly prime ideal of P not containing Q_1 , then $I_{Q_2} \supset I$
- (iii) If I_{Q_2} is a Q_2 -primal ideal for some strongly prime ideal Q_2 containing I and I satisfies (*) condition, then $Q_2 \subseteq Q_1$.

Proof. (i) Let $x \in I_{Q_2}$. Then there exists $c \notin Q_2$ such that $L(x,c) \subseteq I$, which implies $c \notin Q_1$ with $L(x,c) \subseteq I$. Since I is Q_1 -primal and $c \notin Q_1$, we have c is prime to I. So $x \in \langle c, I \rangle = I$.

(ii) Let $x \in Q_1 \setminus Q_2$. Then x is not prime to I and for some $y \notin I$, we have $L(x, y) \subseteq I$. Since $x \notin Q_2$, we have $y \in I_{Q_2}$. But $y \notin I$. Hence $I \subset I_{Q_2}$.

(iii) Suppose Q_2 is not a subset of Q_1 . Then there exists $q \in Q_2 \setminus Q_1$ such that $L(q, x) \subseteq I_{Q_2}$ for some $x \in P \setminus I_{Q_2}$, which implies $c \in P \setminus Q_2$ such that $L(t, c) \subseteq I$ for all $t \in L(q, x)$. Since $t \in L(x)$, we have $L(L(x), c) \subseteq L(t, c) \subseteq I$. However $c \notin Q_2$, so that $x \in I_{Q_2}$, a contradiction.

We now present more properties of primal ideals in a poset by using the following definition. For an ideal I of a poset P, the notation $C(I) = \{x \in P \setminus I : L(x, y) \subseteq I \text{ for some } y \in P \setminus I\}$. If I is strongly prime, then $C(I) = \emptyset$.

Lemma 2.16. Let I be a proper ideal of P. Then the following hold.

- (i) $I \subseteq S$, where S is the adjoint set of I.
- (ii) $C(I) = S \setminus I$.

Proof. (i) Let $x \in I$. Then $L(x, y) \subseteq I$ with $y \notin I$, which implies x is not prime to I. So $x \in S$.

(ii) Let $r \in C(I)$. Then $r \notin I$ and $L(x,r) \subseteq I$ for some $x \notin I$, which imply $r \in S$. Since $r \notin I$, we have $C(I) \subseteq S \setminus I$. Conversely, let $a \in S \setminus I$. Then there exists $y \notin I$ such that $L(a, y) \subseteq I$. So $a \in C(I)$. Hence $C(I) = S \setminus I$. \Box

Theorem 2.17. Let I and J be proper ideals of P with $I \subseteq J$. Then I is a J-primal ideal of P if and only if $C(I) = J \setminus I$.

Proof. Let I be a J-primal ideal of P. Then by Lemma , we have $C(I) = S \setminus I = J \setminus I$. Let $C(I) = J \setminus I$. Then it is enough to prove that J is exactly the set of elements that are not prime to I. Let $c \in J$. If $c \in I$, then $\langle c, I \rangle = P \neq I$. So c is not prime to I. If $c \in J \setminus I = C(I)$, then there exists $z \notin I$ such that $L(z,c) \subseteq I$. It gives c is not prime to I. Suppose $x \notin J$ and x is not prime to I. Then there exists $t \notin I$ such that $L(x,t) \subseteq I$, which implies $x \in C(I) = J \setminus I$, a contradiction. We now prove that J is strongly prime. It is enough to prove that S(J) = J. Clearly $J \subseteq S(J)$. Let $t \in S(J)$. If $t \in I$, then $t \in S(J)$. If $t \notin I$, then there exists $s \notin I$ such that $L(s,t) \subseteq I$, which implies $s \in C(I) = J \setminus I \subseteq J$. Hence I is a J-primal ideal of P.

Corollary 2.18. Let I be an ideal of P. Then I is a primal ideal of P if and only if $C(I) \cup I$ is an ideal (prime ideal) of P.

Corollary 2.19. Let I and J be Q-primal ideals of P. Then C(I) = C(J) if and only if I = J.

Lemma 2.20. Let I be an ideal of P with (*) condition. Then I is strongly semi prime of P if and only if $\langle t, I \rangle$ is a strongly semi-prime ideal of P for any $t \in P$.

Proof. It follows directly from Theorem 2.7 of [3].

Theorem 2.21. Let $J \neq \{0\}$ be a strongly semi-prime ideal of P such that $J \neq SP(J) \subseteq \langle x, J \rangle$ for $x \in SP(J) \setminus J$ and J satisfies (*) condition. Then J is a Q-primal ideal of P, where $Q = \bigcup_{x \in SP(J) \setminus J} \langle x, J \rangle$.

Proof It is clear that $J \subseteq Q$. We now prove that all elements of Q are not prime to J. Let $a, b \in P \setminus J$ such that $L(a, b) \subseteq J$. It is enough to prove $a, b \in \langle t, J \rangle$ for some $t \in SP(J) \setminus J$. By Theorem 2.7, we have SP(J) = I is a strongly prime ideal of P or $SP(J) = I_1 \cap I_2$, where I_1 and I_2 are the only distinct strongly prime ideals of P that are minimal over J.

If SP(J) = I is a strongly prime ideal of P, then either $a \in I \setminus J$ or $b \in I \setminus J$. By Theorem 2.8, we have $\langle a, J \rangle \subseteq \langle b, J \rangle$ or $\langle b, J \rangle \subseteq \langle a, J \rangle$, which implies $a, b \in \langle a, J \rangle$ or $a, b \in \langle b, J \rangle$. Then $D = \{\langle t, J \rangle : t \in SP(J) \setminus J\}$ is a linearly ordered set of ideals and by Lemma , they are strongly semi-prime ideals. Following Theorem 2.8 of [3] and by Zorn's lemma, there exists a strongly prime ideal $Q = \bigcup \langle x, J \rangle$ of P.

 $\substack{x \in SP(J) \setminus J \\ \text{If } SP(J) = I_1 \cap I_2, \text{ where } I_1 \text{ and } I_2 \text{ are the only distinct strongly prime ideals} \\ \text{of } P \text{ that are minimal over } J, \text{ then either } a \in SP(J) \setminus I \text{ or } a \in I_1 \setminus I_2 \text{ and } b \in I_2 \setminus I_1. \\ \text{If } a \in SP(J) \setminus J, \text{ then } a, b \in < a, J >. \\ \text{Suppose that } a \in I_1 \setminus I_2 \text{ and } b \in I_2 \setminus I_1. \\ \text{Since } J \neq SP(J), \text{ there exists } d \in SP(J) \setminus J. \\ \text{By Theorem 2.9, } I_1^* \subseteq < d, J > \text{ and } I_2^* \subseteq < d, J > \text{ and } I_2^* \subseteq < d, J >, \\ \text{which imply } a, b \in < d, J >. \\ \text{Then } D = \{ < d, J >: d \in SP(J) \setminus J \} \text{ is a linearly ordered set of strongly semi-prime ideals. By Zorn's lemma and Theorem 2.8 of [3], there exists a strongly prime ideal <math>Q = \bigcup_{x \in SP(J) \setminus J} < x, J > \text{ of } P. \\ \square$

Acknowledgments. The authors express their sincere thanks to the referee for his/her valuable comments and suggestions which improve the paper a lot.

References

- J. Catherine Grace John and B. Elavarasan, Primeness of extension of semiideals in posets, Applied Mathematical Sciences, 164(8)(2014), 8227-8232.
- [2] J. Catherine Grace John and B. Elavarasan, z^{J} -ideals and strongly prime ideals in posets, submitted.
- [3] J. Catherine Grace John and B. Elavarasan, Strongly prime and strongly semiprime ideals in Posets, Global Journal of Pure and Applied Mathematics, 11(5)(2015), 2965-2970.
- [4] L. Fuchs, On primal ideals, Proc. Amer. Math. Soc., 1(1950), 1 6.
- [5] L. Fuchs, W. Heninzer and B. Olberding, Commutative ideal theory without finiteness conditions: Primal ideal, Trans. Amer. Math. Soc., 357(7)(2004), 2771-2798.
- [6] R. Halaš, On extension of ideals in posets, Discrete Mathematics, 308(2008), 4972-4977.
- [7] G. H. Jiang and L. S. Xu, Maximal ideals relative to a filter on posets and some applications, Int. J. Contemp. Math. Sciences, 3(9)(2008), 401-410.
- [8] Jan Paseka, Note on distributive posets, Math. Appl., 1(2012), 197-206.
- [9] V. S. Kharat and K. A. Mokbel, Primeness and semiprimeness in posets, Math. Bohem., 134(1)(2009), 19-30.
- [10] P. V. Venkatanarasimhan, Semi ideals in posets, Math. Ann., 185(4)(1970), 338-348.