Strongly Prime Ideals and Primal Ideals in Posets

Catherine Grace John and Balasubramanian Elavarasan*
Department of Mathematics, Karunya University, Coimbatore-641114, Tamil Nadu, India.
e-mail : catherine@karunya.edu and belavarasan@gmail.com

Abstract. In this paper, we study and establish some interesting results of ideals in a poset. It is shown that for a nonzero ideal I of a poset P, there are at most two strongly prime ideals of P that are minimal over I. Also, we study the notion of primal ideals in a poset and the relationship among the primal ideals and strongly prime ideals is considered.

1. Introduction

Throughout this paper (P, \leq) denotes a poset with smallest element 0 . For basic terminology and notation for posets, we refer [9] and [6]. For $M \subseteq P$, let $L(M)=\{x \in P: x \leq m$ for all $m \in M\}$ denote the lower cone of M in P and dually, let $U(M)=\{x \in P: m \leq x$ for all $m \in M\}$ be the upper cone of M in P. Let $A, B \subseteq P$, we shall write $L(A, B)$ instead of $L(A \cup B)$ and dually for the upper cones. If $M=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is finite, then we use the notation $L\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ instead of $L\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)$ (and dually). It is clear that for any subset A of P, we have $A \subseteq L(U(A))$ and $A \subseteq U(L(A))$. If $A \subseteq B$, then $L(B) \subseteq L(A)$ and $U(B) \subseteq U(A)$. Moreover, $L U L(A)=L(A)$ and $U L U(A)=U(A)$. Following [10], a non-empty subset I of P is called a semi-ideal if $b \in I$ and $a \leq b$, then $a \in I$. A subset I of P is called an ideal if $a, b \in I$ implies $L(U((a, b)) \subseteq I[9]$. Following [8], for any subset X of $P,[X]$ is the smallest ideal of P containing X. If $X=\{b\}$, then $L(b)$ is called the principle ideal of P generated by b. A proper semi-ideal (ideal) I of P is called prime if $L(a, b) \subseteq I$ implies that either $a \in I$ or $b \in I[6]$. An ideal I of a poset P is called semi-prime if $L(a, b) \subseteq I$ and $L(a, c) \subseteq I$ together imply $L(a, U(b, c))) \subseteq I[9]$. Following [3], an ideal I of P is called strongly prime if $L\left(A^{*}, B^{*}\right) \subseteq I$ implies that either $A \subseteq I$ or $B \subseteq I$ for different proper ideals A, B of P, where $A^{*}=A \backslash\{0\}$. A

[^0]non-empty subset M of P is called an m-system if for any $x_{1}, x_{2} \in M$, there exists $t \in L\left(x_{1}, x_{2}\right)$ such that $t \in M$. Following [1], a non-empty subset M of P is called a strongly m-system if $A \cap M \neq \emptyset$ and $B \cap M \neq \emptyset$ imply $L\left(A^{*}, B^{*}\right) \cap M \neq \emptyset$ for different proper ideals A, B of P. It is clear that an ideal I of P is strongly prime if and only if P / I is a strongly m - system of P. Also every strongly m-system of P is an m-system. Following [3], an ideal I of P is called strongly semi-prime if $L\left(A^{*}, B^{*}\right) \subseteq I$ and $L\left(A^{*}, C^{*}\right) \subseteq I$ together imply $L\left(A^{*}, U\left(B^{*}, C^{*}\right)\right) \subseteq I$ for any different ideals A, B and C of P. For any semi-ideal I of P and a subset A of P, we define $<A, I>=\{z \in P: L(a, z) \subseteq I$ for all $a \in A\}=\bigcap_{a \in A}<a, I>[3]$. If $A=\{x\}$, then we write $<x, I>$ instead of $\langle\{x\}, I\rangle$. For any ideal I of P, a strongly prime ideal Q of P is said to be a minimal strongly prime ideal of I if $I \subseteq Q$ and there exists no strongly prime ideal R of P such that $I \subset R \subset Q$. The set of all strongly prime ideals of P is denoted by $S \operatorname{spec}(P)$ and the set of minimal strongly prime ideals of P is denoted by $\operatorname{Smin}(P)$. For any ideal I of $P, P(I)$ and $S P(I)$ denotes the intersection of all prime semi-ideals and strongly prime ideals of P containing I. It is clear from Theorem 6 of [6] and Example 1.1 of [2] that $P(I)=I$ and $S P(I) \neq I$ for any ideal I of P. Following [1], let I be a semi-ideal of P. Then I is said to have $\left(^{*}\right)$ condition if whenever $L(A, B) \subseteq I$, we have $A \subseteq<B, I>$ for any subsets A and B of P.

2. Main Results

Theorem 2.1. Let M be a nonempty strongly m-system of P and J be an ideal of P with $J \cap M=\emptyset$. Then J is contained in a strongly prime ideal I of P with $I \cap M=\emptyset$.
Proof. Let $S=\{K: K$ is an ideal of P with $K \cap M=\emptyset\}$. Then $S \neq \emptyset$ and by Zorn's lemma, there exists a maximal element $I \in S$ with $I \cap M=\emptyset$. Let A and B be ideals of P with $L\left(A^{*}, B^{*}\right) \subseteq I$ and suppose that $A \nsubseteq I$ and $B \nsubseteq I$. Then there exists $x \in A \backslash I$ and $y \in B \backslash I$ such that $I \subset I \cup\{x\} \subseteq[I \cup\{x\}]$ and $I \subset I \cup\{y\} \subseteq[I \cup\{y\}]$, which imply $[I \cup\{x\}] \cap M \neq \emptyset$ and $[I \cup\{y\}] \cap M \neq \emptyset$. Since M is strongly m-system, we have $L\left([I \cup\{x\}]^{*},[I \cup\{y\}]^{*}\right) \cap M \neq \emptyset$. But $L\left([I \cup\{x\}]^{*},[I \cup\{y\}]^{*}\right) \subseteq L\left([I \cup\{x\}]^{*}\right) \subseteq L\left(I^{*}\right) \subseteq I$, which implies $I \cap M \neq \emptyset$, a contradiction.
Theorem 2.2. Let I and J be ideals of P with $\{0\} \neq J \subseteq I$. Then the following are equivalent.
(i) I is a minimal strongly prime ideal of J.
(ii) For each $x \in I$, there exists $t \in U(x)$ and $y \in P \backslash I$ such that $L\left(L(t)^{*}, L(y)^{*}\right) \subseteq$ J.
(iii) If I has $\left(^{*}\right)$ condition, then for any $x \in I$, we have $<x, J>\nsubseteq I$.

Proof. (i) \Rightarrow (ii) Let I be a minimal strongly prime ideal of J. Suppose that there exists $x \in I$ such that $L\left(L\left(t_{i}\right)^{*}, L\left(y_{j}\right)^{*}\right) \nsubseteq J$ for all $t_{i} \in U(x)$ and $y_{j} \in P \backslash I$. Let
$M=\left\{a_{i j}: a_{i j} \in L\left(L\left(t_{i}\right)^{*}, L\left(y_{j}\right)^{*}\right) \backslash J\right.$ for $t_{i} \in U(x)$ and $\left.y_{j} \in P \backslash I\right\}$. Then $M \neq \emptyset$. For any ideals A, B of P, let $A \cap M \neq \emptyset$ and $B \cap M \neq \emptyset$. Then there exists $a \in A$ and $b \in B$ such that $a, b \in M$. Let $t \in L\left(A^{*}, B^{*}\right)$. Then $t \in L(a, b)$. Since $a, b \in M$, we have $a \in L\left(L\left(t_{i}\right)^{*}, L\left(y_{j}\right)^{*}\right) \backslash J$ and $b \in L\left(L\left(t_{k}\right)^{*}, L\left(y_{l}\right)^{*}\right) \backslash J$ for some $t_{i}, t_{k} \in U(x)$ and $y_{j}, y_{l} \in P \backslash I$, which imply $t \in L\left(L\left(t_{i}\right)^{*}, L\left(y_{j}\right)^{*}\right)$ with $t \notin J$. Indeed, if $t \in J$, then $a \in L\left(L\left(t_{i}\right)^{*}\right) \subseteq L(t) \subseteq J$, a contradiction. So M is a strongly m-system of P. Since $M \cap J=\emptyset$ and by Theorem, there exists a strongly prime ideal I_{1} of P containing J with $I_{1} \cap M=\emptyset$. If $x \in I_{1}$, then $L\left(L(x)^{*}, L\left(y_{i}\right)^{*}\right) \subseteq I_{1}$ for every $y_{i} \in P \backslash I$. But there exists $q \in L\left(L\left(t_{i}\right)^{*}, L\left(y_{j}\right)^{*}\right) \backslash J$ with $q \in M$, which implies $q \in L\left(L\left(t_{i}\right)^{*}, L\left(y_{j}\right)^{*}\right) \subseteq L\left(L(x)^{*}, L\left(y_{i}\right)^{*}\right) \subseteq I_{1}$ and $I_{1} \cap M \neq \emptyset$, a contradiction. So $x \notin I_{1}$. Let $i_{1} \in I_{1}$ and suppose $i_{1} \notin I$. Then $i_{1} \in P \backslash I$ and $L\left(L(x)^{*}, L\left(i_{1}\right)^{*}\right) \subseteq I_{1}$. But $L\left(L\left(t_{i}\right)^{*}, L\left(i_{1}\right)^{*}\right) \nsubseteq J$, which implies $I_{1} \cap M \neq \emptyset$, a contradiction. Thus $I_{1} \subset I$, which is again a contradiction to the minimality of I.
(ii) \Rightarrow (i) Let I_{1} be a strongly prime ideal of P with $J \subseteq I_{1} \subseteq I$. Let $x \in I$. Then there exists $y \in P \backslash I$ and $t \in U(x)$ such that $L\left(L(t)^{*}, L(y)^{*}\right) \subseteq J \subseteq I_{1}$. Since $y \notin I_{1}$, we have $L(t) \subseteq I_{1}$, which implies $x \leq t \in I_{1}$. Thus $I \subseteq I_{1}$ and hence I is a minimal strongly prime ideal of J.
(i) \Rightarrow (iii) Let $x \in I$. Then by (ii), there exists $y \notin I$ and $t \in U(x)$ such that $L\left(L(t)^{*}, L(y)^{*}\right) \subseteq J$. Since J satisfies $\left(^{*}\right)$ condition, we have $y \in L(y)^{*} \subseteq<$ $L(t)^{*}, J>\subseteq<x, J>$, which implies $<x, J>\nsubseteq I$.
(iii) \Rightarrow (i) Let Q be a strongly prime ideal of P such that $J \subseteq Q \subset I$ and $x \in I \backslash Q$. Then $<x, J>\nsubseteq I$. So there exists $y \in<x, J>\backslash I$ such that $L\left(L(x)^{*}, L(y)^{*}\right) \subseteq L(x, y) \subseteq J \subseteq Q$. Since $L(x) \nsubseteq Q$, we have $y \in Q$, a contradiction.

The following example shows that the condition $J \neq\{0\}$ is not superficial in Theorem 2.2.

Example 2.3. Consider $P=\{0,1,2,3\}$ and define a relation \leq on P as follows.

Then (P, \leq) is a poset and $I=\{0,1\}$ is a minimal strongly prime ideal of $J=\{0\}$. But for $1 \in I \backslash J$, there is no $y \in P \backslash I$ and $t \in U(1)$ such that $L\left(L(t)^{*}, L(y)^{*}\right) \subseteq J$.

Following [6], a semi-ideal I of P is called n-prime if for pairwise distinct elements $x_{1}, x_{2}, x_{3}, \ldots, x_{n} \in P$, if $L\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \subseteq I$, then at least $(n-1)$ of n subsets $L\left(x_{2}, x_{3}, x_{4}, \ldots, x_{n}\right), L\left(x_{1}, x_{3}, x_{4}, \ldots, x_{n}\right), \ldots, L\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}\right)$ is a subset
of I. One can define in an obvious way the concept of n-strongly prime ideal of P for $n \geq 2$. As a special case, if I is strongly prime, then I is a 2 -strongly prime ideal. It might be hard to extend the results for $n>2$. It is proved by the following theorem that n-primeness can not be generalized for $n>2$.

Theorem 2.4. Let I be an ideal of P. Then I has the following property that for $n>2$, if pairwise distinct ideals $A_{1}, A_{2}, \ldots, A_{n}$ of P with $L\left(A_{1}^{*}, A_{2}^{*}, \ldots, A_{n}^{*}\right) \subseteq I$, then at least $(n-1)$ of n subsets $L\left(A_{2}^{*}, A_{3}^{*}, \ldots, A_{n}^{*}\right), L\left(A_{1}^{*}, A_{3}^{*}, \ldots, A_{n}^{*}\right), \ldots, L\left(A_{1}^{*}, A_{2}^{*}, \ldots, A_{n-1}^{*}\right)$ are subsets of I.
Proof. Let $A_{1}, A_{2}, \ldots, A_{n}$ be distinct ideals of P with $L\left(A_{1}^{*}, A_{2}^{*}, \ldots, A_{n}^{*}\right) \subseteq I$. Suppose that $L\left(A_{1}^{*}, A_{2}^{*}, \ldots, A_{n-1}^{*}\right) \nsubseteq I$. Then we now prove $L\left(A_{2}^{*}, A_{3}^{*}, \ldots, A_{n}^{*}\right), L\left(A_{1}^{*}, A_{3}^{*}, \ldots\right.$, $\left.A_{n}^{*}\right), \ldots, L\left(A_{1}^{*}, A_{2}^{*}, \ldots, A_{n-2}^{*}, A_{n}^{*}\right)$ are subsets of I. Since $L\left(A_{1}^{*}, A_{2}^{*}, \ldots, A_{n-1}^{*}\right) \nsubseteq I$, then there exists $t \in L\left(A_{1}^{*}, A_{2}^{*}, \ldots, A_{n-1}^{*}\right) \backslash I$ such that $L(t) \subseteq L\left(A_{1}^{*}, A_{2}^{*}, \ldots, A_{n-1}^{*}\right)$, which implies $L\left(t, A_{n}^{*}\right) \subseteq I$. So for each $j \in\{1,2,3, \ldots, n-1\}$, we have $L\left(\bigcup_{i=1, i \neq j}^{n-1} A_{i}^{*}, A_{n}^{*}\right) \subseteq$ $L\left(t, A_{n}^{*}\right) \subseteq I$.

In the generalization of n-primeness in posets, by the above theorem, we get that the cases $n=2$ and $n \geq 3$ are substantially different. Hence a 2 -strongly prime ideal only exists in P. If $n>2$, then every ideal of P is n-strongly prime.

Lemma 2.5. Let I be a semi-prime ideal of P with $\left({ }^{*}\right)$ condition. Then $\left\langle C^{*}, I\right\rangle$ is a strongly prime ideal of P for any ideal C of P.
Proof. Let A, B and C be ideals of P with $L\left(A^{*}, B^{*}\right) \subseteq<C^{*}, I>$. Then $L\left(A^{*}, B^{*}, C^{*}\right) \subseteq I$. By Theorem 2.4, we have $A \subseteq<C^{*}, I>$ or $B \subseteq<C^{*}, I>$.

Theorem 2.6. Let $J \neq\{0\}$ be an ideal of P. Then there are at most two strongly prime ideals of P that are minimal over J.
Proof. Suppose that I_{1}, I_{2} and I_{3} are three pairwise distinct strongly prime ideals of P that are minimal over J. Then there exist $x_{1} \in I_{1} \backslash I_{2}$ and $x_{2} \in I_{2} \backslash I_{1}$. Since $x_{1} \in I_{1}$ and by Theorem 2.2, there exist $c_{2} \notin I_{1}$ and $t_{1} \in U\left(x_{1}\right)$ such that $L\left(L\left(t_{1}\right)^{*}, L\left(c_{2}\right)^{*}\right) \subseteq J$. Also for $x_{2} \in I_{2}$, there exists $c_{1} \notin I_{2}$ and $t_{2} \in U\left(x_{2}\right)$ such that $L\left(L\left(t_{2}\right)^{*}, L\left(c_{1}\right)^{*}\right) \subseteq J$. Then $L\left(L\left(t_{2}\right)^{*}, L\left(c_{1}\right)^{*}\right) \subseteq<x_{1}, J>$, which implies $L\left(L\left(t_{2}\right)^{*}, L\left(c_{1}\right)^{*}, L\left(x_{1}\right)^{*}\right) \subseteq J$. Suppose $L\left(L\left(x_{1}\right)^{*}, L\left(c_{1}\right)^{*}\right) \subseteq J$. Then $L\left(L\left(x_{1}\right)^{*}, L\left(c_{1}\right)^{*}\right) \subseteq I_{2}$. Since I_{2} is a strongly prime ideal of P, we have $c_{1} \in L\left(c_{1}\right) \subseteq I_{2}$ or $x_{1} \in L\left(x_{1}\right) \subseteq I_{2}$, a contradiction. By Theorem 2.4, we have $L\left(L\left(t_{2}\right)^{*}, L\left(c_{1}\right)^{*}\right) \subseteq J$ and $L\left(L\left(t_{2}\right)^{*}, L\left(x_{1}\right)^{*}\right) \subseteq J$. Clearly $I_{1} \nsubseteq I_{2} \cup I_{3}, I_{2} \nsubseteq I_{1} \cup I_{3}$ and $I_{3} \nsubseteq I_{1} \cup I_{2}$. Indeed, if $I_{1} \subseteq I_{2} \cup I_{3}$, then $I_{1}^{*} \subseteq I_{2}^{*} \cup I_{3}^{*}$, which implies $L\left(I_{2}^{*}, I_{3}^{*}\right) \subseteq I_{1}$. Since I_{1} is strongly prime, we have $I_{2} \subseteq I_{1}$ or $I_{3} \subseteq I_{1}$, a contradiction. So we can choose $y_{1} \in I_{1} \backslash\left(I_{2} \cup I_{3}\right) ; y_{2} \in I_{2} \backslash\left(I_{1} \cup I_{3}\right) ; y_{3} \in I_{3} \backslash\left(I_{2} \cup I_{1}\right)$. By the above argument, we have $L\left(L\left(t_{2}\right)^{*}, L\left(y_{1}\right)^{*}\right) \subseteq J \subseteq I_{3}$ for some $t_{2} \in U\left(y_{2}\right)$. Since I_{3} is strongly prime, we have $y_{1} \in I_{3}$ or $y_{2} \leq t_{2} \in I_{3}$, a contradiction. So there are at most two strongly prime ideal that are minimal over J.

Theorem 2.7. Let $J \neq\{0\}$ be an ideal of P. Then at least one of the following statement must hold.
(i) $S P(J)=I_{1}$ is a strongly prime ideal of P.
(ii) $S P(J)=I_{1} \cap I_{2}$, where I_{1} and I_{2} are the distinct strongly prime ideal of P that are minimal over J. If J satisfies $\left(^{*}\right)$ condition, then $L\left(I_{1}^{*}, I_{2}^{*}\right) \subseteq J$.

Proof. By Theorem 2.6, we have $S P(J)=I_{1}$ is a strongly prime ideal of P or $S P(J)=I_{1} \cap I_{2}$, where I_{1} and I_{2} are the distinct strongly prime ideals of P that are minimal over J. Since I_{1} and I_{2} are distinct, there exists $x_{1} \in I_{1} \backslash I_{2}$ and $x_{2} \in I_{2} \backslash I_{1}$. By Theorem 2.2, there exist $c_{2} \notin I_{1}$ and $t_{1} \in U(x)$ such that $L\left(L\left(t_{1}\right)^{*}, L\left(c_{2}\right)^{*}\right) \subseteq J$ and there exist $c_{1} \notin I_{2}$ and $t_{2} \in U(x)$ such that $L\left(L\left(t_{2}\right)^{*}, L\left(c_{1}\right)^{*}\right) \subseteq J$. Then $L\left(L\left(t_{2}\right)^{*}, L\left(c_{1}\right)^{*}\right) \subseteq<x_{1}, J>$, which implies $L\left(L\left(t_{2}\right)^{*}, L\left(c_{1}\right)^{*}, L\left(x_{1}\right)^{*}\right) \subseteq J$. Suppose $L\left(L\left(x_{1}\right)^{*}, L\left(c_{1}\right)^{*}\right) \subseteq J$. Then $L\left(L\left(x_{1}\right)^{*}, L\left(c_{1}\right)^{*}\right) \subseteq I_{2}$, so $c_{1} \in L\left(c_{1}\right) \subseteq I_{2}$ or $x_{1} \in L\left(x_{1}\right) \subseteq I_{2}$, a contradiction. By Theorem 2.4, we have $L\left(L\left(t_{2}\right)^{*}, L\left(c_{1}\right)^{*}\right) \subseteq J$ and $L\left(L\left(t_{2}\right)^{*}, L\left(x_{1}\right)^{*}\right) \subseteq J$, which imply $x_{1} \in L\left(x_{1}\right)^{*} \subseteq<L\left(t_{2}\right)^{*}, J>\subseteq<x_{2}, J>$. Thus $L\left(x_{1}, x_{2}\right) \subseteq J$ and hence $L\left(I_{1}^{*}, I_{2}^{*}\right) \subseteq J$.
Theorem 2.8. Let $J \neq\{0\}$ be a semi-prime ideal of P such that $J \neq S P(J)=I$ is a strongly prime ideal of P and J satisfies $\left({ }^{*}\right)$ condition. Then for each $x \in$ $I \backslash J$ and $I \subseteq<x, J>$, we have $<x, J>$ is a strongly prime of P. Furthermore $<y, J>\subseteq<x, J>$ or $<x, J>\subseteq<y, J>$ for every $x, y \in I \backslash J$.
Proof. Let $x \in I \backslash J$ and $I \subset<x, J>$ with $L\left(A^{*}, B^{*}\right) \subseteq<x, J>$ for different proper ideals A, B of P. If $L\left(A^{*}, B^{*}\right) \subseteq I$, then $A \subseteq<x, J>$ or $B \subseteq<x, J>$. Let $L\left(A^{*}, B^{*}\right) \nsubseteq I$. Since $L\left(A^{*}, B^{*}\right) \subseteq<x, J>$, we have $L\left(A^{*}, B^{*}, L(x)^{*}\right) \subseteq J$. Then by Theorem 2.4, we have $L\left(A^{*}, L(x)^{*}\right) \subseteq J$ and $L\left(B^{*}, L(x)^{*}\right) \subseteq J$, which imply $A \subseteq<x, J>$ and $B \subseteq<x, J\rangle$. So $\langle x, J>$ is a strongly prime ideal of P.

Let $x, y \in I \backslash J$. If $<x, J>\not \subset<y, J>$, then there exists $z \in<x, J>$ with $z \notin I$. Let $w \in<y, J>$. If $w \in I / J$, then $\langle y, J>\subseteq<x, J>$. Suppose $w \notin I$. Then $L\left(L(z)^{*}, L(w)^{*}\right) \nsubseteq I$. Since $L\left(L(z)^{*}, L(x)^{*}\right) \subseteq J$, we have $L\left(L(z)^{*}, L(x)^{*}, L(w)^{*}\right) \subseteq$ J. By Theorem 2.4, we have $L\left(L(z)^{*}, L(x)^{*}\right) \subseteq J$ and $L\left(L(x)^{*}, L(w)^{*}\right) \subseteq J$, which imply $w \in\langle x, J\rangle$.

Theorem 2.9. Let $J \neq\{0\}$ be a semi-prime ideal of P such that $J \neq S P(J)=$ $I_{1} \cap I_{2}$, where I_{1}, I_{2} are distinct strongly prime ideals of P that are minimal over J and J satisfies $\left({ }^{*}\right)$ condition. Then for each $x \in S P(J) \backslash J$ and $S P(J) \subseteq<x, J>$, we have $\langle x, J\rangle$ is a strongly prime of P containing I_{1} and I_{2}. Furthermore either $<y, J>\subseteq<x, J>$ or $<x, J>\subseteq<y, J>$ for every $x, y \in S P(J) \backslash J$.
Proof. Let $x \in\left(I_{1} \cap I_{2}\right) \backslash J$. Then by Theorem 2.7, $L\left(I_{1}^{*}, I_{2}^{*}\right) \subseteq J$, which implies $I_{1} \subseteq<x, J>$ and $I_{2} \subseteq<x, J>$. Let $L\left(A^{*}, B^{*}\right) \subseteq<x, J>$ for some different ideals A, B of P. If $A, B \subseteq I_{1}$ or $A, B \subseteq I_{2}$, then $I_{1} \subseteq<x, J>$ or $I_{2} \subseteq<x, J>$. If $A, B \nsubseteq I_{1}$ or $A, B \nsubseteq I_{2}$, then $L\left(A^{*}, B^{*}\right) \nsubseteq J$. Since $L\left(A^{*}, B^{*}\right) \subseteq<x, J>$, we have $L\left(A^{*}, B^{*}, L(x)^{*}\right) \subseteq J$. By Theorem 2.4, we have $L\left(A^{*}, L(x)^{*}\right) \subseteq J$ and $L\left(B^{*}, L(x)^{*}\right) \subseteq J$. Hence $A \subseteq<x, J>$ and $B \subseteq<x, J>$. It follows from Theorem
2.8 that either $<y, J>\subseteq<x, J>$ or $<x, J>\subseteq<y, J>$ for every $x, y \in S P(J) \backslash J$.

Following [4] and [5], for an ideal I of P, an element $x \in P$ is called prime to I if $\langle x, I\rangle=I$. A proper ideal I of P is called primal if the set $S(I)=\{x \in P: x$ is not prime to $I\}$ is an ideal of P and it is called the adjoint set of I. It is clear that for any ideal I of $P, I \subseteq S(I)$ and $S(I)$ is a semi-ideal of P, but $S(I)$ is not necessarily to be an ideal of P as shows in the following example.
Example 2.10. Consider $P=\{0, a, b, c, d\}$ and define the partial relation \leq on P as follows

Then (P, \leq) is a poset and $I=\{0\}$ is an ideal of P. Here $S(I)=\{0, a, b, c\}$ is a semi-ideal of P, but not an ideal of P as $L(U(b, c))=\{0, a, b, c, d\} \nsubseteq S(I)$.

If I is a proper ideal of P, then $I=S(I)$ ([9], Theorem 20), so every proper prime ideal of P is primal. But Example 2.11 shows that there exists a primal ideal of P which is not necessarily to be prime.

Example 2.11. Consider $P=\{0, a, b, c\}$ and define a relation \leq on P as follows.

Then (P, \leq) is a poset with a primal ideal $I=\{0\}$. Here I is not a prime ideal of P.

Following [7], a proper ideal I of P is called irreducible if for any ideals J and K of $P, I=J \cap K$ implies $J=I$ or $K=I$.
Lemma 2.12. Every prime ideal of a poset P is irreducible.

Proof. Let I be a prime ideal of P such that $I=J \cap K$ for some ideals J and K of P. Then $I \subseteq J$ and $I \subseteq K$. Suppose $I \neq J$ and $I \neq K$. Then there exist $x, y \in P$ such that $x \in J \backslash I$ and $y \in K \backslash I$, which imply $L(x, y) \subseteq J \cap K \subseteq I$, so either $x \in I$ or $y \in I$, a contradiction.

In Example 2.10, $I=\{0, a\}$ is an irreducible ideal of P, but not primal. So the converse of Lemma is not true in general. But we have the following.
Theorem 2.13. Every irreducible semi-prime ideal of P is primal.
Proof. Let I be an irreducible semi-prime ideal of P and $x_{1}, x_{2} \in S(I)$. Then $I \subset<x_{1}, I>\cap<x_{2}, I>$ and there exists $a \in\left(<x_{1}, I>\cap<x_{2}, I>\right) \backslash I$ such that $L\left(a, x_{1}\right) \subseteq I$ and $L\left(a, x_{2}\right) \subseteq I$. Since I is semi-prime, we have $L\left(a, U\left(x_{1}, x_{2}\right)\right) \subseteq I$. So for any $t \in L\left(U\left(x_{1}, x_{2}\right)\right)$, we have $L(a, t) \subseteq I$.

For any ideal I of P, if $S(I)$ is a strongly prime ideal of P, then I is called a S-primal ideal of P. Following [2], for an ideal I and a strongly prime ideal Q of P, we define $I_{Q}=\{x \in P: L(s, x) \subseteq I$ for some $s \in P \backslash Q\}=\bigcup_{s \in P \backslash Q}<s, I>$.
Lemma 2.14 Let I be a Q-primal ideal of P with $\left(^{*}\right)$ condition. Then $<x, I>_{Q}=<$ $x, I_{Q}>$.
Proof. Let $y \in<x, I>_{Q}$. Then there exists $c \notin Q$ such that $L(y, c) \subseteq<x, I>$, which implies $L(x, t) \subseteq I$ for all $t \in L(y, c)$. Since $t \in L(y)$, we have $L(L(y), x) \subseteq$ $L(t, x) \subseteq I \subseteq I_{Q}$. Then $y \in<x, I_{Q}>$. Let $a \in<x, I_{Q}>$. Then $L(x, a) \subseteq I_{Q}$, which implies $c \notin Q$ such that $L(t, c) \subseteq I$ for all $t \in L(x, a)$. Since $c \notin Q$, we have $t \in\langle c, I\rangle=I$. Hence $a \in<x, I>_{Q}$.
Theorem 2.15. Let I be a Q_{1}-primal ideal of P. Then
(i) If Q_{2} is a strongly prime ideal of P containing Q_{1}, then $I_{Q_{2}}=I$.
(ii) If Q_{2} is a strongly prime ideal of P not containing Q_{1}, then $I_{Q_{2}} \supset I$
(iii) If $I_{Q_{2}}$ is a Q_{2}-primal ideal for some strongly prime ideal Q_{2} containing I and I satisfies (${ }^{*}$) condition, then $Q_{2} \subseteq Q_{1}$.

Proof. (i) Let $x \in I_{Q_{2}}$. Then there exists $c \notin Q_{2}$ such that $L(x, c) \subseteq I$, which implies $c \notin Q_{1}$ with $L(x, c) \subseteq I$. Since I is Q_{1}-primal and $c \notin Q_{1}$, we have c is prime to I. So $x \in<c, I>=\bar{I}$.
(ii) Let $x \in Q_{1} \backslash Q_{2}$. Then x is not prime to I and for some $y \notin I$, we have $L(x, y) \subseteq I$. Since $x \notin Q_{2}$, we have $y \in I_{Q_{2}}$. But $y \notin I$. Hence $I \subset I_{Q_{2}}$.
(iii) Suppose Q_{2} is not a subset of Q_{1}. Then there exists $q \in Q_{2} \backslash Q_{1}$ such that $L(q, x) \subseteq I_{Q_{2}}$ for some $x \in P \backslash I_{Q_{2}}$, which implies $c \in P \backslash Q_{2}$ such that $L(t, c) \subseteq I$ for all $t \in L(q, x)$. Since $t \in L(x)$, we have $L(L(x), c) \subseteq L(t, c) \subseteq I$. However $c \notin Q_{2}$, so that $x \in I_{Q_{2}}$, a contradiction.

We now present more properties of primal ideals in a poset by using the following definition. For an ideal I of a poset P, the notation $C(I)=\{x \in P \backslash I: L(x, y) \subseteq I$ for some $y \in P \backslash I\}$. If I is strongly prime, then $C(I)=\emptyset$.

Lemma 2.16. Let I be a proper ideal of P. Then the following hold.
(i) $I \subseteq S$, where S is the adjoint set of I.
(ii) $C(I)=S \backslash I$.

Proof. (i) Let $x \in I$. Then $L(x, y) \subseteq I$ with $y \notin I$, which implies x is not prime to I. So $x \in S$.
(ii) Let $r \in C(I)$. Then $r \notin I$ and $L(x, r) \subseteq I$ for some $x \notin I$, which imply $r \in S$. Since $r \notin I$, we have $C(I) \subseteq S \backslash I$. Conversely, let $a \in S \backslash I$. Then there exists $y \notin I$ such that $L(a, y) \subseteq I$. So $a \in C(I)$. Hence $C(I)=S \backslash I$.
Theorem 2.17. Let I and J be proper ideals of P with $I \subseteq J$. Then I is a J-primal ideal of P if and only if $C(I)=J \backslash I$.
Proof. Let I be a J-primal ideal of P. Then by Lemma, we have $C(I)=S \backslash I=J \backslash I$. Let $C(I)=J \backslash I$. Then it is enough to prove that J is exactly the set of elements that are not prime to I. Let $c \in J$. If $c \in I$, then $\langle c, I\rangle=P \neq I$. So c is not prime to I. If $c \in J \backslash I=C(I)$, then there exists $z \notin I$ such that $L(z, c) \subseteq I$. It gives c is not prime to I. Suppose $x \notin J$ and x is not prime to I. Then there exists $t \notin I$ such that $L(x, t) \subseteq I$, which implies $x \in C(I)=J \backslash I$, a contradiction. We now prove that J is strongly prime. It is enough to prove that $S(J)=J$. Clearly $J \subseteq S(J)$. Let $t \in S(J)$. If $t \in I$, then $t \in S(J)$. If $t \notin I$, then there exists $s \notin I$ such that $L(s, t) \subseteq I$, which implies $s \in C(I)=J \backslash I \subseteq J$. Hence I is a J-primal ideal of P.

Corollary 2.18. Let I be an ideal of P. Then I is a primal ideal of P if and only if $C(I) \cup I$ is an ideal (prime ideal) of P.
Corollary 2.19. Let I and J be Q-primal ideals of P. Then $C(I)=C(J)$ if and only if $I=J$.

Lemma 2.20. Let I be an ideal of P with (*) condition. Then I is strongly semi prime of P if and only if $<t, I\rangle$ is a strongly semi-prime ideal of P for any $t \in P$.

Proof. It follows directly from Theorem 2.7 of [3].
Theorem 2.21. Let $J \neq\{0\}$ be a strongly semi-prime ideal of P such that $J \neq$ $S P(J) \subseteq<x, J>$ for $x \in S P(J) \backslash J$ and J satisfies $\left(^{*}\right)$ condition. Then J is a Q-primal ideal of P, where $Q=\bigcup_{x \in S P(J) \backslash J}\langle x, J>$.
Proof It is clear that $J \subseteq Q$. We now prove that all elements of Q are not prime to J. Let $a, b \in P \backslash J$ such that $L(a, b) \subseteq J$. It is enough to prove $a, b \in<t, J>$ for some $t \in S P(J) \backslash J$. By Theorem 2.7, we have $S P(J)=I$ is a strongly prime ideal of P or $S P(J)=I_{1} \cap I_{2}$, where I_{1} and I_{2} are the only distinct strongly prime ideals of P that are minimal over J.

If $S P(J)=I$ is a strongly prime ideal of P, then either $a \in I \backslash J$ or $b \in I \backslash J$. By Theorem 2.8, we have $\langle a, J\rangle \subseteq<b, J\rangle$ or $\langle b, J\rangle \subseteq<a, J\rangle$, which implies
$a, b \in<a, J>$ or $a, b \in<b, J>$. Then $D=\{<t, J>: t \in S P(J) \backslash J\}$ is a linearly ordered set of ideals and by Lemma, they are strongly semi-prime ideals. Following Theorem 2.8 of [3] and by Zorn's lemma, there exists a strongly prime ideal $Q=\bigcup_{x \in S P(J) \backslash J}<x, J>$ of P.

If $S P(J)=I_{1} \cap I_{2}$, where I_{1} and I_{2} are the only distinct strongly prime ideals of P that are minimal over J, then either $a \in S P(J) \backslash I$ or $a \in I_{1} \backslash I_{2}$ and $b \in I_{2} \backslash I_{1}$. If $a \in S P(J) \backslash J$, then $a, b \in<a, J>$. Suppose that $a \in I_{1} \backslash I_{2}$ and $b \in I_{2} \backslash I_{1}$. Since $J \neq S P(J)$, there exists $d \in S P(J) \backslash J$. By Theorem 2.9, $I_{1}^{*} \subseteq<d, J>$ and $I_{2}^{*} \subseteq<d, J>$, which imply $a, b \in<d, J>$. Then $D=\{<d, J>: d \in S P(J) \backslash J\}$ is a linearly ordered set of strongly semi-prime ideals. By Zorn's lemma and Theorem 2.8 of [3], there exists a strongly prime ideal $Q=\bigcup_{x \in S P(J) \backslash J}<x, J>$ of P.

Acknowledgments. The authors express their sincere thanks to the referee for his/her valuable comments and suggestions which improve the paper a lot.

References

[1] J. Catherine Grace John and B. Elavarasan, Primeness of extension of semiideals in posets, Applied Mathematical Sciences, 164(8)(2014), 8227-8232.
[2] J. Catherine Grace John and B. Elavarasan, z^{J}-ideals and strongly prime ideals in posets, submitted.
[3] J. Catherine Grace John and B. Elavarasan, Strongly prime and strongly semiprime ideals in Posets, Global Journal of Pure and Applied Mathematics, 11(5)(2015), 2965-2970.
[4] L. Fuchs, On primal ideals, Proc. Amer. Math. Soc., 1(1950), 1-6.
[5] L. Fuchs, W. Heninzer and B. Olberding, Commutative ideal theory without finiteness conditions: Primal ideal, Trans. Amer. Math. Soc., 357(7)(2004), 2771-2798.
[6] R. Halaš, On extension of ideals in posets, Discrete Mathematics, 308(2008), 4972-4977.
[7] G. H. Jiang and L. S. Xu, Maximal ideals relative to a filter on posets and some applications, Int. J. Contemp. Math. Sciences, 3(9)(2008), 401-410.
[8] Jan Paseka, Note on distributive posets, Math. Appl., 1(2012), 197-206.
[9] V. S. Kharat and K. A. Mokbel, Primeness and semiprimeness in posets, Math. Bohem., 134(1)(2009), 19-30.
[10] P. V. Venkatanarasimhan, Semi ideals in posets, Math. Ann., 185(4)(1970), 338-348.

[^0]: * Corresponding Author.

 Received July 23, 2015; revised March 21, 2016; accepted April 7, 2016. 2010 Mathematics Subject Classification: 06A06.
 Key words and phrases: Poset, ideals, strongly prime ideal, primal ideal, minimal prime ideal.

