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ABSTRACT. In this paper, we study and establish some interesting results of ideals in a
poset. It is shown that for a nonzero ideal I of a poset P, there are at most two strongly
prime ideals of P that are minimal over I. Also, we study the notion of primal ideals in a
poset and the relationship among the primal ideals and strongly prime ideals is considered.

1. Introduction

Throughout this paper (P, <) denotes a poset with smallest element 0. For
basic terminology and notation for posets, we refer [9] and [6]. For M C P, let
L(M)={xz € P:xz <mfor all m € M} denote the lower cone of M in P and
dually, let U(M) = {z € P : m < z for all m € M} be the upper cone of M in P. Let
A, B C P, we shall write L(A, B) instead of L(AUB) and dually for the upper cones.
If M = {x1,22,...,2,} is finite, then we use the notation L(z1,zs,...,z,) instead
of L({x1,x2,...,x,})(and dually). It is clear that for any subset A of P, we have
ACLU(A)) and A CU(L(A)). If AC B, then L(B) C L(A) and U(B) CU(A).
Moreover, LUL(A) = L(A) and ULU(A) = U(A). Following [10], a non-empty
subset I of P is called a semi-ideal if b € I and a < b, then a € I. A subset I of P
is called an ideal if a,b € I implies L(U((a,b)) C I[9]. Following [8], for any subset
X of P, [X] is the smallest ideal of P containing X. If X = {b}, then L(b) is called
the principle ideal of P generated by b. A proper semi-ideal (ideal) I of P is called
prime if L(a,b) C I implies that either a € I or b € I [6]. An ideal I of a poset P is
called semi-prime if L(a,b) C I and L(a, c¢) C I together imply L(a,U(b,c))) C I[9].
Following [3], an ideal I of P is called strongly prime if L(A*, B*) C I implies that
either A C I or B C [ for different proper ideals A, B of P, where A* = A\{0}. A
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non-empty subset M of P is called an m-system if for any z1,x2 € M, there exists
t € L(x1,xz2) such that ¢t € M. Following [1], a non-empty subset M of P is called
a strongly m-system if AN M # ) and BN M # () imply L(A*, B¥*) N M # () for
different proper ideals A, B of P. It is clear that an ideal I of P is strongly prime
if and only if P/I is a strongly m- system of P. Also every strongly m-system of
P is an m-system. Following [3]|, an ideal I of P is called strongly semi-prime if
L(A*,B*) C I and L(A*,C*) C I together imply L(A*,U(B*,C*)) C I for any
different ideals A, B and C' of P. For any semi-ideal I of P and a subset A of P, we
define < A, I >={2€ P:L(a,z) CIforallac A} = ﬂ <a,I>[3. If A={z},
acA
then we write < z, I > instead of < {z},I >. For any ideal I of P, a strongly prime
ideal @ of P is said to be a minimal strongly prime ideal of I if I C @ and there
exists no strongly prime ideal R of P such that I C R C @Q. The set of all strongly
prime ideals of P is denoted by Sspec(P) and the set of minimal strongly prime
ideals of P is denoted by Smin(P). For any ideal I of P, P(I) and SP(I) denotes
the intersection of all prime semi-ideals and strongly prime ideals of P containing
I. Tt is clear from Theorem 6 of [6] and Example 1.1 of [2] that P(I) = I and
SP(I) # I for any ideal I of P. Following [1], let I be a semi-ideal of P. Then I is
said to have (*) condition if whenever L(A, B) C I, we have A C< B, I > for any
subsets A and B of P.

2. Main Results

Theorem 2.1. Let M be a nonempty strongly m-system of P and J be an ideal
of P with JNM = (. Then J is contained in a strongly prime ideal I of P with
INM=0.

Proof. Let S = {K : K is an ideal of P with K N M = (}. Then S # () and
by Zorn’s lemma, there exists a maximal element I € S with TN M = (. Let A
and B be ideals of P with L(A*, B*) C I and suppose that A ¢ [ and B ¢ I.
Then there exists x € A\I and y € B\I such that I C TU {z} C [T U{z}] and
I c Tu{y} C [TU{y}], which imply [TU{z}]NM # 0 and [I U {y}] N M # 0.
Since M is strongly m-system, we have L([I U {x}]*,[T U {y}]*) N M # 0. But
L(TU{z}]*,[IU{y}]*) C L([LU{z}]*) € L(I*) C I, which implies IN M # 0, a
contradiction. (]
Theorem 2.2. Let I and J be ideals of P with {0} # J C I. Then the following
are equivalent.

(i) I is a minimal strongly prime ideal of J.

(ii) For eachx € I, there existst € U(z) andy € P\I such that L(L(t)*, L(y)*) C
J.

(iii) If I has (*) condition, then for any x € I, we have < z,J >¢ I.

Proof. (i) = (ii) Let I be a minimal strongly prime ideal of J. Suppose that there
exists ¢ € I such that L(L(t;)*, L(y;)*) € J for all ¢; € U(x) and y; € P\I. Let
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M = {a;j : a;; € L(L(t;)*, L(y;)*)\J for t; € U(z) and y; € P\I}. Then M # 0.
For any ideals A, B of P, let ANM # () and BN M # (). Then there exists a € A
and b € B such that a,b € M. Let t € L(A*, B*). Then t € L(a,b). Since a,b € M,
we have a € L(L(t;)*, L(y;)*)\J and b € L(L(tx)*, L(y;)*)\J for some t;,t, € U(z)
and y;,y € P\I, which imply ¢t € L(L(¢;)*, L(y,;)*) with ¢ ¢ J. Indeed, if ¢t € J,
then a € L(L(t;)*) C L(t) C J, a contradiction. So M is a strongly m-system of
P. Since M NJ = () and by Theorem , there exists a strongly prime ideal I; of
P containing J with I N M = 0. If x € I, then L(L(x)*, L(y;)*) C I; for every
y; € P\I. But there exists ¢ € L(L(t;)*, L(y;)*)\J with ¢ € M, which implies
q € L(L(t;)*,L(y;)*) € L(L(x)*, L(y;)*) C I and I N M # (), a contradiction. So
x ¢ I,. Let iy € I and suppose i1 ¢ I. Then i1 € P\I and L(L(x)*, L(i1)*) C I;.
But L(L(t;)*, L(i1)*) € J, which implies I; N M # (), a contradiction. Thus I; C I,
which is again a contradiction to the minimality of I.

(ii) = (i) Let I; be a strongly prime ideal of P with J C Iy C I. Let z € I.
Then there exists y € P\I and ¢ € U(z) such that L(L(t)*, L(y)*) € J C I;. Since
y ¢ I, we have L(t) C Iy, which implies < ¢ € I;. Thus I C I; and hence I is a
minimal strongly prime ideal of J.

(i) = (iii) Let # € I. Then by (ii), there exists y ¢ I and t € U(x) such
that L(L(t)*, L(y)*) C J. Since J satisfies (*) condition, we have y € L(y)* C<
L(t)*,J >C< z,J >, which implies < z,J >¢ I.

(iii) = (i) Let @ be a strongly prime ideal of P such that J C @ C I and
r € I\Q. Then < z,J >¢ I. So there exists y €< z,J > \I such that
L(L(z)*,L(y)*) € L(z,y) € J C Q. Since L(z) ¢ Q, we have y € @, a con-
tradiction. d

The following example shows that the condition J # {0} is not superficial in
Theorem 2.2.

Example 2.3. Consider P = {0, 1,2,3} and define a relation < on P as follows.
[ ) 3
‘ 2

.1

.0

Then (P, <) is a poset and I = {0,1} is a minimal strongly prime ideal of J = {0}.
But for 1 € I\J, there is no y € P\I and ¢t € U(1) such that L(L(t)*, L(y)*) C J.
|

Following [6], a semi-ideal I of P is called n-prime if for pairwise distinct ele-
ments 1, Ta, T3, ...,y € P, if L(xy,za,23,...,2,) C I, then at least (n — 1) of n
subsets L(xa, T3, T4, ..., Tpn), L(X1, X3, Tg, ooy Ty), ooy L(T1, T2, T3, ..., Tpu—1) 1S a subset
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of I. One can define in an obvious way the concept of n-strongly prime ideal of P
for n > 2. As a special case, if I is strongly prime, then [ is a 2-strongly prime
ideal. It might be hard to extend the results for n > 2. It is proved by the following
theorem that n-primeness can not be generalized for n > 2.

Theorem 2.4. Let I be an ideal of P. Then I has the following property that for
n > 2, if pairwise distinct ideals A1, Aa, ..., Ay, of P with L(AY, A5, ..., A%) C 1, then
at least (n—1) of n subsets L(A%, A%, ..., AY), LAY, A%, ..., A%), ..., L(AT, A, ..., A% 1)
are subsets of 1.

Proof. Let Ay, Aa, ..., A, be distinct ideals of P with L(AF, A5, ..., A%) C I. Suppose
that L(Af}, A5, ..., A% ) € I. Then we now prove L(A5, A5, ..., A%), L(A}, A3, ...,
A%, . L(AY, A5, . A%, A%) are subsets of I. Since L(Af, A;, ..., A% _;) € I, then
there exists ¢ € L(A7, A5, ..., A _)\I such that L(t) C L(A}, As, ..., A% ), which
n—1
implies L(t, A}) C I. So for each j € {1,2,3,...,n—1}, we have L( U A7 A C
i=1,i#j
L(t,A%) C I. O

In the generalization of n-primeness in posets, by the above theorem, we get
that the cases n = 2 and n > 3 are substantially different. Hence a 2-strongly prime
ideal only exists in P. If n > 2, then every ideal of P is n-strongly prime.

Lemma 2.5. Let I be a semi-prime ideal of P with (*) condition. Then < C* /I >
is a strongly prime ideal of P for any ideal C of P.

Proof. Let A,B and C be ideals of P with L(A*,B*) C< C*,I >. Then
L(A*,B*,C*) C I. By Theorem 2.4, we have A C< C*,I > or B C< C*, I >.
/5 O

Theorem 2.6. Let J # {0} be an ideal of P. Then there are at most two strongly
prime ideals of P that are minimal over J.

Proof. Suppose that I, I, and I3 are three pairwise distinct strongly prime ide-
als of P that are minimal over J. Then there exist 1 € I;\Ils and zo € L\I;.
Since #; € I; and by Theorem 2.2, there exist co ¢ I and t; € U(xy)
such that L(L(t1)*,L(c2)*) C J. Also for xo € I, there exists ¢; ¢ I and
ty € U(xs) such that L(L(t2)*, L(c1)*) € J. Then L(L(t2)*, L(c1)*) C< z1,J >,
which implies L(L(t2)*, L(c1)*, L(z1)*) € J. Suppose L(L(x1)*,L(c1)*) C J.
Then L(L(z1)*, L(c1)*) € I. Since I is a strongly prime ideal of P, we have
¢1 € L(ey) C Iy or 1 € L(xy) C Iy, a contradiction. By Theorem 2.4, we have
L(L(tz)*,L(Cl)*) g J and L(L(tg)*,L(xl)*) g J. Clearly Il I(Z IQ U 13712 7¢_ 11 @] 13
and I3 ,i_ I; Uy, Indeed, if Iy C Iy U I3, then I C I3 U I3, which implies
L(I3,I3) C I . Since I; is strongly prime, we have Iy C I} or I3 C Iy, a contradic-
tion. So we can choose y; € I1\(I2UI3);y2 € I;\(I1 U I3);y3 € Is\(I2UIh). By the
above argument, we have L(L(t2)*, L(y1)*) C J C I3 for some to2 € U(y2). Since I3
is strongly prime, we have y; € I3 or ys < t5 € I3, a contradiction. So there are at
most two strongly prime ideal that are minimal over J. O
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Theorem 2.7. Let J # {0} be an ideal of P. Then at least one of the following
statement must hold.

(i) SP(J) =1y is a strongly prime ideal of P.

(i) SP(J) = I N Iz, where I1 and Iy are the distinct strongly prime ideal of P
that are minimal over J. If J satisfies (*) condition, then L(If,15) C J.

Proof. By Theorem 2.6, we have SP(J) = I is a strongly prime ideal of P or
SP(J) = I1NIy, where I; and I are the distinct strongly prime ideals of P that are
minimal over J. Since I; and I are distinct, there exists z1 € I1\Iy and x5 € b\ I;.
By Theorem 2.2, there exist c¢o ¢ I; and t; € U(x) such that L(L(t1)*, L(c2)*) C J
and there exist ¢; ¢ I and ty € U(z) such that L(L(t2)*,L(c1)*) € J. Then
L(L(t2)*, L(c1)*) €< x1,J >, which implies L(L(¢2)*, L(c1)*, L(x1)*) € J. Sup-
pose L(L(z1)*,L(c1)*) C J. Then L(L(x1)*,L(c1)*) C Iz, so ¢1 € L(c1) C Iz or
x1 € L(z1) C I, a contradiction. By Theorem 2.4, we have L(L(t2)*, L(c1)*) C J
and L(L(t2)*, L(z1)*) C J, which imply z1 € L(x1)* C< L(t2)*,J >C< xa,J > .
Thus L(z1,22) C J and hence L(IT,I5) C J. O

Theorem 2.8. Let J # {0} be a semi-prime ideal of P such that J # SP(J) =1
is a strongly prime ideal of P and J satisfies (*) condition. Then for each x €
INJ and I C< z,J >, we have < x,J > is a strongly prime of P. Furthermore
<y, J>C<a,J>or<z,J>C<y,J > for every x,y € I\J.

Proof. Let x € I\J and I C< z,J > with L(A*, B*) C< z, J > for different proper
ideals A, B of P. If L(A*,B*) C I, then A C< z,J > or B C< z,J > . Let
L(A*,B*) ¢ I. Since L(A*, B*) C< z,.J >, we have L(A*, B*, L(z)*) C J. Then
by Theorem 2.4, we have L(A*, L(z)*) C J and L(B*,L(z)*) C J, which imply
AC<z,J>and BC<ux,J > So <z, J>is a strongly prime ideal of P.

Let z,y € I\NJ. If < x,J >Z< y,J >, then there exists z €< x,J > with z ¢ I.
Let w e< y,J > . If w e I/J, then < y,J >C< x,J >. Suppose w ¢ I. Then
L(L(z)*, L(w)*) € I. Since L(L(z)*, L(z)*) C J, we have L(L(z)*, L(z)*, L(w)*) C
J. By Theorem 2.4, we have L(L(z)*, L(z)*) C J and L(L(z)*, L(w)*) C J, which
imply w e< z,J >. g

Theorem 2.9. Let J # {0} be a semi-prime ideal of P such that J # SP(J) =
I N1, where 11, Iy are distinct strongly prime ideals of P that are minimal over J
and J satisfies (*) condition. Then for each x € SP(J)\J and SP(J) C< z,J >,
we have < x,J > is a strongly prime of P containing Iy and Is. Furthermore either
<y, JJ >C<a,J>or<z,J>C<y,J > for every xz,y € SP(J)\J.

Proof. Let « € (I; N I3)\J. Then by Theorem 2.7, L(I7,I5) C J, which implies
I C< z,J > and I C< z,J >. Let L(A*,B*) C< z,J > for some different
ideals A,Bof P. If ABC I or A,BC Iy, then I, C<z,J >or I C<z,J >.
If AB ¢ I or A\B ¢ I, then L(A*, B*) ¢ J. Since L(A*,B*) C< x,J >,
we have L(A*, B*, L(x)*) C J. By Theorem 2.4, we have L(A*, L(z)*) C J and
L(B*,L(x)*) C J. Hence A C< z,J > and B C< x,J >. Tt follows from Theorem
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2.8 that either < y,J >C< a,J > or < z,J >C< y,J > for every z,y € SP(J)\J.
/8

Following [4] and [5], for an ideal I of P, an element x € P is called prime to I
if <z, I >=1. A proper ideal I of P is called primal if the set S(I) = {x € P : x
is not prime to I} is an ideal of P and it is called the adjoint set of I. It is clear
that for any ideal I of P, I C S(I) and S(I) is a semi-ideal of P, but S(I) is not
necessarily to be an ideal of P as shows in the following example.

Example 2.10. Consider P = {0, a,b,c,d} and define the partial relation < on P
as follows

0
Then (P, <) is a poset and I = {0} is an ideal of P. Here S(I) = {0,a,b,c} is
a semi-ideal of P, but not an ideal of P as L(U(b,c)) = {0,a,b,¢,d} € S(I). O

If I is a proper ideal of P, then I = S(I) ([9], Theorem 20), so every proper
prime ideal of P is primal. But Example 2.11 shows that there exists a primal ideal
of P which is not necessarily to be prime.

Example 2.11. Consider P = {0, a, b, c} and define a relation < on P as follows.

c

Then (P, <) is a poset with a primal ideal I = {0}. Here I is not a prime ideal
of P. O

Following [7], a proper ideal I of P is called irreducible if for any ideals J and
Kof P,I=JNK implies J =1 or K = 1.

Lemma 2.12. FEvery prime ideal of a poset P is irreducible.
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Proof. Let I be a prime ideal of P such that I = JN K for some ideals J and K of
P. Then I C J and I C K. Suppose I # J and I # K. Then there exist z,y € P
such that € J\I and y € K\I, which imply L(x,y) C JN K C I, so either z € T
or y € I, a contradiction. O

In Example 2.10, I = {0, a} is an irreducible ideal of P, but not primal. So the
converse of Lemma is not true in general. But we have the following.

Theorem 2.13. Ewvery irreducible semi-prime ideal of P is primal.

Proof. Let I be an irreducible semi-prime ideal of P and z1,29 € S(I). Then
I Cc<z,I >N < x> and there exists a € (< 21,1 >N < 3,1 >)\I such that
L(a,z1) C I and L(a,xz2) C I. Since I is semi-prime, we have L(a,U(z1,22)) C I.
So for any t € L(U(z1,x2)), we have L(a,t) C I. O

For any ideal I of P, if S(I) is a strongly prime ideal of P, then I is called a
S-primal ideal of P. Following [2], for an ideal I and a strongly prime ideal @ of
P, we define Ig = {x € P: L(s,z) C I for some s € P\Q} = U < s, 1 >.

seP\Q

Lemma 2.14 Let I be a Q-primal ideal of P with (*) condition. Then < z,I >g=<
ac,IQ >.

Proof. Let y €< x,I >¢q. Then there exists ¢ ¢ @ such that L(y,c) C< z,I >,
which implies L(z,t) C I for all ¢t € L(y,c). Since ¢t € L(y), we have L(L(y),z) C
L(t,x) C I CIg. Theny €< x,Ig >. Let a €< x,Ig >. Then L(z,a) C Ig,
which implies ¢ ¢ @ such that L(t,c¢) C I for all t € L(x,a). Since ¢ ¢ @), we have
te<c,I>=1 Henceac<uz,I>q. (|

Theorem 2.15. Let I be a Q1-primal ideal of P. Then
(1) If Q2 is a strongly prime ideal of P containing Q1, then Ig, = I.
(i) If Q2 is a strongly prime ideal of P not containing Q1, then I, D I

(iii) If Ig, is a Qa-primal ideal for some strongly prime ideal Q2 containing I and
I satisfies (*) condition, then Q2 C Q.

Proof. (i) Let € Ig,. Then there exists ¢ ¢ Q2 such that L(z,¢) C I, which
implies ¢ ¢ @ with L(xz,¢) C I. Since I is Qi-primal and ¢ ¢ @1, we have ¢ is
prime to I. Sox €< ¢, I >=1.

(ii) Let z € @1\Q2. Then z is not prime to I and for some y ¢ I, we have
L(z,y) C I. Since = ¢ Q2, we have y € Ig,. But y ¢ I. Hence I C Ig,.

(iii) Suppose Q2 is not a subset of Q1. Then there exists ¢ € Q2\Q1 such that
L(g,z) C I, for some = € P\Ig,, which implies ¢ € P\Q3 such that L(t,¢) C I for
all t € L(q,x). Since t € L(x), we have L(L(x),c) C L(t,c) C I. However ¢ ¢ Qa,
so that x € I,, a contradiction. 0

We now present more properties of primal ideals in a poset by using the following
definition. For an ideal I of a poset P, the notation C'(I) = {x € P\I : L(z,y) C I
for some y € P\I}. If I is strongly prime, then C(I) = 0.
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Lemma 2.16. Let I be a proper ideal of P. Then the following hold.
(i) I C S, where S is the adjoint set of I.
(ii) C(I) = S\I.

Proof. (i) Let x € I. Then L(z,y) C I with y ¢ I, which implies x is not prime to
I.Soxesf.

(ii) Let r € C(I). Then r ¢ I and L(x,r) C I for some x ¢ I, which imply r € S.
Since r ¢ I, we have C(I) C S\I. Conversely, let a € S\I. Then there exists y ¢ I
such that L(a,y) C I. So a € C(I). Hence C(I) = S\I. O

Theorem 2.17. Let I and J be proper ideals of P with I C J. Then I is a J-primal
ideal of P if and only if C(I) = J\I.

Proof. Let I be a J-primal ideal of P. Then by Lemma , we have C(I) = S\I = J\I.
Let C(I) = J\I. Then it is enough to prove that .J is exactly the set of elements
that are not prime to I. Let ¢ € J. If ¢ € I, then < ¢,I >= P # I. So ¢ is not
prime to I. If ¢ € J\I = C(I), then there exists z ¢ I such that L(z,c) C I. It
gives c¢ is not prime to I. Suppose z ¢ J and z is not prime to I. Then there exists
t ¢ I such that L(x,t) C I, which implies 2z € C(I) = J\I, a contradiction. We
now prove that J is strongly prime. It is enough to prove that S(J) = J. Clearly
JCSJ). Let t € S(J). Ift € I, thent € S(J). If t ¢ I, then there exists s ¢ I
such that L(s,t) C I, which implies s € C(I) = J\I C J. Hence I is a J-primal
ideal of P. O

Corollary 2.18. Let I be an ideal of P. Then I is a primal ideal of P if and only
if C(I)U I is an ideal (prime ideal) of P.

Corollary 2.19. Let I and J be Q-primal ideals of P. Then C(I) = C(J) if and
only if I = J.

Lemma 2.20. Let I be an ideal of P with (*) condition. Then I is strongly semi
prime of P if and only if < t,1 > is a strongly semi-prime ideal of P for anyt € P.

Proof. 1t follows directly from Theorem 2.7 of [3]. O

Theorem 2.21. Let J # {0} be a strongly semi-prime ideal of P such that J #
SP(J) C< x,J > for x € SP(J)\J and J satisfies (*) condition. Then J is a
Q-primal ideal of P, where @ = U <z,J>.
2€SP(I\J

Proof Tt is clear that J C Q. We now prove that all elements of () are not prime to
J. Let a,b € P\J such that L(a,b) C J. It is enough to prove a,b €< ¢,J > for
some t € SP(J)\J. By Theorem 2.7, we have SP(J) = I is a strongly prime ideal
of P or SP(J) = I N1, where I; and I are the only distinct strongly prime ideals
of P that are minimal over J.

If SP(J) = I is a strongly prime ideal of P, then either a € I\J or b € I\J.
By Theorem 2.8, we have < a,J >C< b,J > or < b,J >C< a,J >, which implies
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a,b €< a,J > or a,b €< b, J > . Then D = {< t,J >t € SP(J)\J} is a
linearly ordered set of ideals and by Lemma , they are strongly semi-prime ideals.
Following Theorem 2.8 of [3] and by Zorn’s lemma, there exists a strongly prime
ideal Q = U <x,J > of P.
z€SP(I\J

If SP(J) = I; N I, where I; and I are the only distinct strongly prime ideals
of P that are minimal over J, then either a € SP(J)\I or a € I1\Iz and b € I)\I;.
If @ € SP(J)\J, then a,b €< a,J >. Suppose that a € I;\I and b € L\I.
Since J # SP(J), there exists d € SP(J)\J. By Theorem 2.9, I7 C< d,J > and
I3 C< d,J >, which imply a,b €< d,J >. Then D = {< d,J >:d € SP(J)\J} is
a linearly ordered set of strongly semi-prime ideals. By Zorn’s lemma and Theorem
2.8 of [3], there exists a strongly prime ideal @ = U <x,J>of P. O

x€SP(I\J
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