• Title/Summary/Keyword: power-supply rejection

Search Result 30, Processing Time 0.022 seconds

Low Drop-Out (LDO) Voltage Regulator with Improved Power Supply Rejection

  • Jang, Ho-Joon;Roh, Yong-Seong;Moon, Young-Jin;Park, Jeong-Pyo;Yoo, Chang-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.313-319
    • /
    • 2012
  • The power supply rejection (PSR) of low drop-out (LDO) voltage regulator is improved by employing an error amplifier (EA) which is configured so the power supply noise be cancelled at the output. The LDO regulator is implemented in a 0.13-${\mu}m$ standard CMOS technology. The external supply voltage level is 1.2-V and the output is 1.0-V while the load current can range from 0-mA to 50-mA. The power supply rejection is 46-dB, 49-dB, and 38-dB at DC, 2-MHz, and 10-MHz, respectively. The quiescent current consumption is 65-${\mu}A$.

A Capacitor-less Low Dropout Regulator for Enhanced Power Supply Rejection

  • Yun, Seong Jin;Kim, Jeong Seok;Jeong, Taikyeong Ted.;Kim, Yong Sin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.152-157
    • /
    • 2015
  • Various power supply noise sources in a system integrated circuit degrade the performance of a low dropout (LDO) regulator. In this paper, a capacitor-less low dropout regulator for enhanced power supply rejection is proposed to provide good power supply rejection (PSR) performance. The proposed scheme is implemented by an additional capacitor at a gate node of a pass transistor. Simulation results show that the PSR performance of the proposed LDO regulator depends on the capacitance value at the gate node of the pass transistor, that it can be maximized, and that it outperforms a conventional LDO regulator.

Feed-Forward Compensation Technique in Stationary Reference Frame for the Enhanced Disturbance Rejection Performance in Parallel Operation of Double-Conversion UPSs (이중 변환 UPS의 병렬 운전 시 외란 저감 성능 향상을 위한 정지 좌표계 상의 전향 보상 기법)

  • Ryu, Hyo-Jun;Yoon, Young-Doo;Mo, Jae-Sung;Choi, Seung-Cheol;Woo, Tae-Gyeom
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.367-375
    • /
    • 2022
  • Generally, a proportional-resonant controller is used to eliminate steady-state errors during the voltage-current control of a double-conversion uninterruptible power supply (UPS) in a stationary reference frame. Additionally, the feed-forward control compensating for the load current, which can be considered a disturbance of the voltage controller, can be used to improve the disturbance rejection performance. However, during the parallel operation of UPSs, circulating current can occur between UPS modules when performing both feed-forward control and droop control because feed-forward control reduces the circulating current impedance. This study proposes a feed-forward compensation technique that considers the impedance of circulating current. An additional feed-forward compensation technique is developed to enhance the disturbance rejection performance. The validity of the proposed feed-forward compensation technique is verified by the experiment results of the parallel operation of a 500 W double-conversion UPS module.

High-Frequency PSR-Enhanced LDO regulator Using Direct Compensation Transistor (직접 보상 트랜지스터를 사용하는 고주파 PSR 개선 LDO 레귤레이터)

  • Yun, Yeong Ho;Kim, Daejeong;Mo, Hyunsun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.722-726
    • /
    • 2019
  • In this paper, we propose a low drop-out (LDO) regulator with improved power-supply rejection (PSR) characteristics in the high frequency region. In particular, an NMOS transistor with a high output resistance is added as a compensation circuit to offset the high frequency noise passing through the finite output resistance of the PMOS power switch. The elimination of power supply noise by the compensating transistor was explained analytically and presented as the direction for further improvement. The circuit was fabricated in a $0.35-{\mu}m$ standard CMOS process and Specter simulations were carried out to confirm the PSR improvement of 26 dB compared to the conventional LDO regulator at 10 MHz.

Stability and PSR(Power-Supply Rejection) Models for Design Optimization of Capacitor-less LDO Regulators (회로 최적화를 위한 외부 커패시터가 없는 LDO 레귤레이터의 안정도와 PSR 성능 모델)

  • Joo, Soyeon;Kim, Jintae;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.71-80
    • /
    • 2015
  • LDO(Low Drop-Out) regulators have become an essential building block in modern PMIC(Power Managment IC) to extend battery life of electronic devices. In this paper, we optimize capacitor-less LDO regulator via Geometric Programming(GP) designed using Dongbu HiTek $0.5{\mu}m$ BCDMOS process. GP-compatible models for stability and PSR of LDO regulators are derived based on monomial formulation of transistor characteristics. Average errors between simulation and the proposed model are 9.3 % and 13.1 %, for phase margin and PSR, respectively. Based on the proposed models, the capacitor-less LDO optimization can be performed by changing the PSR constraint of the design. The GP-compatible performance models developed in this work enables the design automation of capacitor-less LDO regulator for different design target specification.

An MMIC Broadband Image Rejection Downconverter Using an InGaP/GaAs HBT Process for X-band Application

  • Lee Jei-Young;Lee Young-Ho;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • In this paper, we demonstrate a fully integrated X-band image rejection down converter, which was developed using InGaP/GaAs HBT MMIC technology, consists of two single-balanced mixers, a differential buffer amplifier, a differential YCO, an LO quadratue generator, a three-stage polyphase filter, and a differential intermediate frequency(IF) amplifier. The X-band image rejection downconverter yields an image rejection ratio of over 25 dB, a conversion gain of over 2.5 dB, and an output-referred 1-dB compression power$(P_{1dB,OUT})$ of - 10 dBm. This downconverter achieves broadband image rejection characteristics over a frequency range of 1.1 GHz with a current consumption of 60 mA from a 3-V supply.

High PSRR Low-Dropout(LDO) Regulator (높은 PSRR을 갖는 Low-Dropout(LDO) 레귤레이터)

  • Kim, In-Hye;Roh, Jeong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.318-321
    • /
    • 2016
  • As IoT industry are growing fast, The importance of power management system is also being magnified. CMOS High power-supply rejection ratio(PSRR) Low-dropout(LDO) regulator is achieved by the proposed ripple Subtractor, Feed-forward capacitor and OTA in this paper. The LDO is implemented in $0.18-{\mu}m$ CMOS technology. With the proposed structures, in the maximum loading of 40mA, Simulation result achieves PSRR of -73.4dB at 500kHz and PSRR better than -40dB when frequency is below 10MHz with $6.8-{\mu}F$ output capacitor.

Ultra-Low-Power Differential ISFET/REFET Readout Circuit

  • Thanachayanont, Apinunt;Sirimasakul, Silar
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.243-245
    • /
    • 2009
  • A novel ultra-low-power readout circuit for a pH-sensitive ion-sensitive field-effect transistor (ISFET) is proposed. It uses an ISFET/reference FET (REFET) differential pair operating in weak-inversion and a simple current-mode metal-oxide semiconductor FET (MOSFET) translinear circuit. Simulation results verify that the circuit operates with excellent common-mode rejection ability and good linearity for a single pH range from 4 to 10, while only 4 nA is drawn from a single 1 V supply voltage.

  • PDF

A High Gain and High Harmonic Rejection LNA Using High Q Series Resonance Technique for SDR Receiver

  • Kim, Byungjoon;Kim, Duksoo;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • This paper presents a high gain and high harmonic rejection low-noise amplifier (LNA) for software-defined radio receiver. This LNA exploits the high quality factor (Q) series resonance technique. High Q series resonance can amplify the in-band signal voltage and attenuate the out-band signals. This is achieved by a source impedance transformation. This technique does not consume power and can easily support multiband operation. The chip is fabricated in a $0.13-{\mu}m$ CMOS. It supports four bands (640, 710, 830, and 1,070MHz). The measured forward gain ($S_{21}$) is between 12.1 and 17.4 dB and the noise figure is between 2.7 and 3.3 dB. The IIP3 measures between -5.7 and -10.8 dBm, and the third harmonic rejection ratios are more than 30 dB. The LNA consumes 9.6 mW from a 1.2-V supply.

Design of UHF CMOS Front-ends for Near-field Communications

  • Hamedi-Hagh, Sotoudeh;Tabesh, Maryam;Oh, Soo-Seok;Park, Noh-Joon;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.817-823
    • /
    • 2011
  • This paper introduces an efficient voltage multiplier circuit for improved voltage gain and power efficiency of radio frequency identification (RFID) tags. The multiplier is fully integratable and takes advantage of both passive and active circuits to reduce the required input power while yielding the desired DC voltage. A six-stage voltage multiplier and an ultralow power voltage regulator are designed in a 0.13 ${\mu}m$ complementary metal-oxide semiconductor process for 2.45 GHz RFID applications. The minimum required input power for a 1.2 V supply voltage in the case of a 50 ${\Omega}$ antenna is -20.45 dBm. The efficiency is 15.95% for a 1 $M{\Omega}$ load. The regulator consumes 129 nW DC power and maintains the reference voltage in a 1.1% range with $V_{dd}$ varying from 0.8 to 2 V. The power supply noise rejection of the regulator is 42 dB near a 2.45 GHz frequency and performs better than -32 dB from 100 Hz to 10 GHz frequencies.