• 제목/요약/키워드: power-efficient design

검색결과 1,044건 처리시간 0.03초

캠버각 변화에 따른 소수력 축류 프로펠러 수차의 유동 특성 연구 (Performance Characteristics of an Axial Propeller Small-hydro Turbine with Various Cambers of Runner Blade)

  • 변순석;김태윤;한상목;김정환;김윤제
    • 신재생에너지
    • /
    • 제8권2호
    • /
    • pp.44-51
    • /
    • 2012
  • The aim of this paper is to examine the hydraulically optimized camber of a blade. Prior studies have tried to determine the sound method of design on small-hydro turbines. These have appeared to realize a reasonably efficient small-hydro turbine. Nonetheless, specific and accurate design data have not as yet been established for the shape of the runner blade. Hence, this study examines the performance characteristic of an axial propeller turbine with 0~8% camber variations. The results of output power, efficiency, and pressure distribution of the turbine are graphically depicted. The definition of camber refers to the NACA airfoil. The commercial finite element analysis (FEA) packages, ANSYS, and CFX are used in this study. The results revealed the performance characteristics on small-hydro turbine and suggested a highly efficient section shape of the runner.

고효율 소형 수직형 풍력터빈의 공력성능에 관한 실험적 연구 (An Experimental Study on the Aerodynamic Performance of High-efficient, Small-scale, Vertical-axis Wind Turbine)

  • 박준용;이명재;이승진;이승배
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.580-588
    • /
    • 2009
  • This paper summarizes the experimentally-measured performance of small-scale, vertical-axis wind turbine for the purpose of improving the aerodynamic efficiency and its controllability. The turbine is designed to have a Savonius-Type rotor with an inlet guide-vane and an side guide-vane so that it achieves a higher efficiency than any lift- or drag-based turbines. The main design factors for this high-efficient, vertical wind turbine are the number of blades (Z), and the aspect ratio of Height/Diameter (H/D) among many. The basic model has the diameter of 580mm, the height of 464mm, and the blade number of 10. The maximum power coefficient of 0.50 was experimentally measured for the above-mentioned specifications. The inlet-guide vane ensures the maximum efficiency when the angle of attack to the rotor blade lies between $15^{\circ}$ and $20^{\circ}$. This experimental results for the vertical-axis wind turbine can be applied to the preliminary design of turbine output curve based on the wind characteristics at the proposed site by controlling its aerodynamic performance given as a priori.

이중 루프 Digital LDO Regulator 용 ADC 설계 (Design of ADC for Dual-loop Digital LDO Regulator)

  • 박상순;전정희;이재형;최중호
    • 전기전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.333-339
    • /
    • 2023
  • 세계적으로 웨어러블 디바이스의 시장이 확장하고 있으며, 이를 위한 효율적인 PMIC의 수요 또한 늘어나고 있다. 웨어러블 디바이스용 PMIC 특성상 높은 에너지 효율과 작은 면적이 필요하다. 프로세스 기술의 발전으로 저전력 설계가 가능하지만, 기존의 아날로그 LDO 레귤레이터는 전원 전압이 낮아짐에 따라 설계의 어려움이 있다. 본 논문에서는 이중 루프 디지털 LDO용 coarse-fine ADC를 제안한다, ADC의 설계는 55 nm CMOS 공정으로 진행하였고 34.78 dB와 5.39 bits의 SNR과 ENOB를 갖는다.

전력계통의 종합적인 해석을 위한 대화형 소프트웨어의 개발 (Development of Interactive Software for Integrated Analysis in Power System)

  • 신명철;홍진표;김철환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.252-255
    • /
    • 1990
  • Analyzing and simulating of today's complex electrical networks require the use of computer-aided engineering tools. In recent years, the rapid advances in micro-computer hardware technology have increased the availability of power application software on the personal computer, once the domain of mainframes and minicomputers, enabling efficient and cost-effective power system analysis. An interactive simulation and analysis software for a power system is developed and presented in this paper. The software is written in PASCAL and is designed for PC use. This paper presents an integrated software package to run PC-DOS for the analysis of electric power networks. The software is menu driven and controlled by prompts. These programs are intended to help users understand the process of power system analysis and design.

  • PDF

DRAM 의 저전력 구현을 위한 안정한 기판전압 발생기 설계에 관한 연구 (A study on the Design of a stable Substrate Bias Generator for Low power DRAM's)

  • 곽승욱;성양현곽계달
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.703-706
    • /
    • 1998
  • This paper presents an efficient substrate-bias generator(SBG)for low-power, high-density DRAM's The proposed SBG can supply stable voltage with switching the supply voltage of driving circuit, and it can substitude the small capacitance for the large capacitance. The charge pumping circuit of the SBG suffere no VT loss and is to be applicable to low-voltage DRAM's. Also it can reduce the power consumption to make VBB because of it's high pumping efficiency. Using biasing voltage with positive temperature coefficient, VBB level detecting circuit can detect constant value of VBB against temperature variation. VBB level during VBB maintaining period varies 0.19% and the power dissipation during this period is 0.16mw. Charge pumping circuit can make VBB level up to -1.47V using VCC-1.5V, and do charge pumping operation one and half faster than the conventional ones. The temperature dependency of the VBB level detecting circuit is 0.34%. Therefore the proposed SBG is expected to supply a stable VBB with less power consumption when it is used in low power DRAM's.

  • PDF

태양광 발전시스템의 일사량에 따른 출력 특성 (Electric Output Characteristics According to Irradiation for Photovoltaic Systems)

  • 왕강;최용성;김향곤;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.189-191
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As output power characteristics according to a irradiation range of $100{\sim}900[W/m^2]$, output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

  • PDF

Magnetic Resonant Coupling Based Wireless Power Transfer System with In-Band Communication

  • Kim, Sun-Hee;Lim, Yong-Seok;Lee, Seung-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권6호
    • /
    • pp.562-568
    • /
    • 2013
  • This paper presents a design of a wireless power transfer system based on magnetic resonant coupling technology with in-band wireless communication. To increase the transmission distance and compensate for the change in the effective capacitance due to the varying distance, the proposed system used a loop antenna with a selectable capacitor array. Because the increased transmission distance enables multiple charging, we added a communication protocol operated at the same frequency band to manage a network and control power circuits. In order to achieve the efficient bandwidth in both power transfer mode and communication mode, the S-parameters of the loop antennas are adjusted by switching a series resistor. Our test results showed that the loop antenna achieved a high Q factor in power transfer mode and enough passband in communication mode.

Voltage Source Resonant Inverter for Excimer Gas Discharge Load

  • Koudriavtsev, Oleg;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.206-211
    • /
    • 2002
  • Silent gas discharge method has been widely applied fur ozone production, ultraviolet light and UV laser generation. Since ozone and ultraviolet applications have tendency to spread widely in industry, the development of efficient and low - cost power supply for such systems is an important task at present. This paper introduces high-frequency inverter type mode power supply designed fur ozone generation tube and ultraviolet generation excimer lamp and considerations on the design of the inverter and pulse density modulation control strategy applied in it.

고전력밀도 AC/DC Adapter를 위한 off-time 제어법 (Off-time control method for high power density AC/DC Adapter)

  • 강신호;장준호;홍성수;이준영
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.286-288
    • /
    • 2007
  • The proposed method offers an improved control method for high power density AC/DC adapter by using more energy efficient electrical equipments. Power factor corrector (PFC) topology is based on boost topology with boundary conduction mode (BCM). DC/DC topology is based on half-bridge topology with newly introduced off-time control method, which helps to reduce size of the semiconductor and the magnetic devices. Test results with 85W AC/DC adapter (18.5V/4.6A) design shows that the measured efficiency is 90% with power density of $36W/in^3$. It also show low no load power consumption of about 0.5W.

  • PDF

Computational Materials Engineering: Recent Applications of VASP in the MedeA® Software Environment

  • Wimmer, Erich;Christensen, Mikael;Eyert, Volker;Wolf, Walter;Reith, David;Rozanska, Xavier;Freeman, Clive;Saxe, Paul
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.263-272
    • /
    • 2016
  • Electronic structure calculations have become a powerful foundation for computational materials engineering. Four major factors have enabled this unprecedented evolution, namely (i) the development of density functional theory (DFT), (ii) the creation of highly efficient computer programs to solve the Kohn-Sham equations, (iii) the integration of these programs into productivity-oriented computational environments, and (iv) the phenomenal increase of computing power. In this context, we describe recent applications of the Vienna Ab-initio Simulation Package (VASP) within the MedeA$^{(R)}$ computational environment, which provides interoperability with a comprehensive range of modeling and simulation tools. The focus is on technological applications including microelectronic materials, Li-ion batteries, high-performance ceramics, silicon carbide, and Zr alloys for nuclear power generation. A discussion of current trends including high-throughput calculations concludes this article.