• 제목/요약/키워드: positive scalar curvature

검색결과 12건 처리시간 0.032초

ON THE STRUCTURE OF THE FUNDAMENTAL GROUP OF MANIFOLDS WITH POSITIVE SCALAR CURVATURE

  • Kim, Jin-Hong;Park, Han-Chul
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.129-140
    • /
    • 2011
  • The aim of this paper is to study the structure of the fundamental group of a closed oriented Riemannian manifold with positive scalar curvature. To be more precise, let M be a closed oriented Riemannian manifold of dimension n (4 $\leq$ n $\leq$ 7) with positive scalar curvature and non-trivial first Betti number, and let be $\alpha$ non-trivial codimension one homology class in $H_{n-1}$(M;$\mathbb{R}$). Then it is known as in [8] that there exists a closed embedded hypersurface $N_{\alpha}$ of M representing $\alpha$ of minimum volume, compared with all other closed hypersurfaces in the homology class. Our main result is to show that the fundamental group ${\pi}_1(N_{\alpha})$ is always virtually free. In particular, this gives rise to a new obstruction to the existence of a metric of positive scalar curvature.

Constant scalar curvature on open manifolds with finite volume

  • Kim, Seong-Tag
    • 대한수학회논문집
    • /
    • 제12권1호
    • /
    • pp.101-108
    • /
    • 1997
  • We let (M,g) be a noncompact complete Riemannina manifold of dimension $n \geq 3$ with finite volume and positive scalar curvature. We show the existence of a conformal metric with constant positive scalar curvature on (M,g) by gluing solutions of Yamabe equation on each compact subsets $K_i$ with $\cup K_i = M$ .

  • PDF

RICCI AND SCALAR CURVATURES ON SU(3)

  • Kim, Hyun-Woong;Pyo, Yong-Soo;Shin, Hyun-Ju
    • 호남수학학술지
    • /
    • 제34권2호
    • /
    • pp.231-239
    • /
    • 2012
  • In this paper, we obtain the Ricci curvature and the scalar curvature on SU(3) with some left invariant Riemannian metric. And then we get a necessary and sufficient condition for the scalar curvature (resp. the Ricci curvature) on the Riemannian manifold SU(3) to be positive.

ON EVOLUTION OF FINSLER RICCI SCALAR

  • Bidabad, Behroz;Sedaghat, Maral Khadem
    • 대한수학회지
    • /
    • 제55권3호
    • /
    • pp.749-761
    • /
    • 2018
  • Here, we calculate the evolution equation of the reduced hh-curvature and the Ricci scalar along the Finslerian Ricci flow. We prove that Finsler Ricci flow preserves positivity of the reduced hh-curvature on finite time. Next, it is shown that evolution of Ricci scalar is a parabolic-type equation and moreover if the initial Finsler metric is of positive flag curvature, then the flag curvature, as well as the Ricci scalar, remain positive as long as the solution exists. Finally, we present a lower bound for Ricci scalar along Ricci flow.

RIGIDITY OF COMPLETE RIEMANNIAN MANIFOLDS WITH VANISHING BACH TENSOR

  • Huang, Guangyue;Ma, Bingqing
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1341-1353
    • /
    • 2019
  • For complete Riemannian manifolds with vanishing Bach tensor and positive constant scalar curvature, we provide a rigidity theorem characterized by some pointwise inequalities. Furthermore, we prove some rigidity results under an inequality involving $L^{\frac{n}{2}}$-norm of the Weyl curvature, the traceless Ricci curvature and the Sobolev constant.

CONFORMAL DEFORMATION ON A SEMI-RIEMANNIAN MANIFOLD (I)

  • Jung, Yoon-Tae;Lee, Soo-Young
    • 대한수학회보
    • /
    • 제38권2호
    • /
    • pp.223-230
    • /
    • 2001
  • In this parper, we considered the uniqueness of positive time-solution to equation ${\Box}_g$u(t,$\chi$) - $c_n$u(t,$\chi$) + $c_n$u(t,$\chi$)$^[\frac{n+3}{n-3}]$ = 0, where $c_n$ = $\frac{n-1}{4n}$ and ${\Box}_g$ is the d'Alembertian for a Lorentzian warped manifold M = {a,$\infty$] $\times_f$ N.

  • PDF

THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS

  • Kim, Eui Chul
    • 대한수학회보
    • /
    • 제50권2호
    • /
    • pp.431-440
    • /
    • 2013
  • Let ($M^3$, $g$) be a 3-dimensional closed Sasakian spin manifold. Let $S_{min}$ denote the minimum of the scalar curvature of ($M^3$, $g$). Let ${\lambda}^+_1$ > 0 be the first positive eigenvalue of the Dirac operator of ($M^3$, $g$). We proved in [13] that if ${\lambda}^+_1$ belongs to the interval ${\lambda}^+_1{\in}({\frac{1}{2}},\;{\frac{5}{2}})$, then ${\lambda}^+_1$ satisfies ${\lambda}^+_1{\geq}{\frac{S_{min}+6}{8}}$. In this paper, we remove the restriction "if ${\lambda}^+_1$ belongs to the interval ${\lambda}^+_1{\in}({\frac{1}{2}},\;{\frac{5}{2}})$" and prove $${\lambda}^+_1{\geq}\;\{\frac{S_{min}+6}{8}\;for\;-\frac{3}{2}<S_{min}{\leq}30, \\{\frac{1+\sqrt{2S_{min}}+4}{2}}\;for\;S_{min}{\geq}30$$.