References
- M. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985), no. 3, 449-457. https://doi.org/10.1007/BF01388581
- A. Fraser, Fundamental groups of manifolds with positive isotropic curvature, Ann. of Math. (2) 158 (2003), no. 1, 345-354. https://doi.org/10.4007/annals.2003.158.345
- A. Fraser and J. Wolfson, The fundamental group of manifolds of positive isotropic curvature and surface groups, Duke Math. J. 133 (2006), no. 2, 325-334. https://doi.org/10.1215/S0012-7094-06-13325-2
- M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993), 1-213, Progr. Math., 132, Birkhauser Boston, Boston, MA, 1996.
- M. Gromov and H. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Etudes Sci. Publ. Math. No. 58 (1983), 83-196.
- R. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1-92. https://doi.org/10.4310/CAG.1997.v5.n1.a1
- J. Kazdan and F. Warner, Prescribing curvatures, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, pp. 309-319. Amer. Math. Soc., Providence, R.I., 1975.
- H. B. Lawson Jr., Minimal varieties in real and complex geometry, Seminaire de Mathematiques Superieures, No. 57 (Ete 1973). Les Presses de l'Universite de Montreal, Montreal, Que., 1974. 100 pp.
- M. Micallef and J. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199-227. https://doi.org/10.2307/1971420
- M. Micallef and M. Wang, Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), no. 3, 649-672. https://doi.org/10.1215/S0012-7094-93-07224-9
- M. Ramachandran and J. Wolfson, Fill radius and the fundamental group, Journal of Topology and Analysis 2 (2010), 99-107. https://doi.org/10.1142/S1793525310000288
- R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159-183. https://doi.org/10.1007/BF01647970
- R. Schoen and S. T. Yau, The existence of a black hole due to condensation of matter, Comm. Math. Phys. 90 (1983), no. 4, 575-579. https://doi.org/10.1007/BF01216187
- J.-P. Serre, Trees, Springer-Verlag, Berlin, 1980.
- J. Wolfson, Four manifolds with two-positive Ricci curvature, preprint (2008), arXiv: 0805.4183v2.
Cited by
- ADDENDUM AND ERRATUM TO "ON THE STRUCTURE OF THE FUNDAMENTAL GROUP OF MANIFOLDS WITH POSITIVE SCALAR CURVATURE" vol.50, pp.2, 2013, https://doi.org/10.4134/BKMS.2013.50.2.537