DOI QR코드

DOI QR Code

A CONCEPT UNIFYING THE ARMENDARIZ AND NI CONDITIONS

  • Chun, Young (DEPARTMENT OF MATHEMATICS KOREA SCIENCE ACADEMY) ;
  • Jeon, Young-Cheol (DEPARTMENT OF MATHEMATICS KOREA SCIENCE ACADEMY) ;
  • Kang, Sung-Kyung (DEPARTMENT OF MATHEMATICS KOREA SCIENCE ACADEMY) ;
  • Lee, Key-Nyoung (DEPARTMENT OF MATHEMATICS KOREA SCIENCE ACADEMY) ;
  • Lee, Yang (DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY)
  • Received : 2009.05.18
  • Published : 2011.01.31

Abstract

We study the structure of the set of nilpotent elements in various kinds of ring and introduce the concept of NR ring as a generalization of Armendariz rings and NI rings. We determine the precise relationships between NR rings and related ring-theoretic conditions. The Kothe's conjecture is true for the class of NR rings. We examined whether several kinds of extensions preserve the NR condition. The classical right quotient ring of an NR ring is also studied under some conditions on the subset of nilpotent elements.

Keywords

References

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  2. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8,3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  3. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc.18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  4. E. P. Armendariz, H. K. Koo, and J. K. Park, Isomorphic Ore extensions, Comm.Algebra 15 (1987), no. 12, 2633-2652. https://doi.org/10.1080/00927878708823556
  5. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, (English summary) Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
  6. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Regularity conditions and the simplicityof prime factor rings, J. Pure Appl. Algebra 115 (1997), no. 3, 213-230. https://doi.org/10.1016/S0022-4049(96)00011-4
  7. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
  8. Y. U. Cho, N. K. Kim, M. H. Kwon, and Y. Lee, Classical quotient rings and ordinaryextensions of 2-primal rings, Algebra Colloq. 13 (2006), no. 3, 513-523. https://doi.org/10.1142/S1005386706000460
  9. K. R. Goodearl, Von Neumann Regular Rings, Monographs and Studies in Mathematics, 4. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.
  10. K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, 16. Cambridge University Press, Cambridge, 1989.
  11. C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J.Pure Appl. Algebra 151 (2000), no. 3, 215-226. https://doi.org/10.1016/S0022-4049(99)00020-1
  12. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings,Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
  13. S. U. Hwang, Y. C, Jeon, and Y. Lee, Structure and topological conditions of NI rings,J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
  14. Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. KoreanMath. Soc. 46 (2009), no. 1, 135-146. https://doi.org/10.4134/BKMS.2009.46.1.135
  15. N. K. Kim and Y. Lee, Nilideals and nil-Armendariz rings, preprint.
  16. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
  17. C. I. Lee and Y. Lee, Properties and related conditions of K-rings, preprint.
  18. T.-K. Lee and T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3,583-593.
  19. Y. Lee, Y. Lee, and H. K. Kim, Questions on 2-primal rings, Comm. Algebra 26 (1998),no. 2, 595-600. https://doi.org/10.1080/00927879808826150
  20. G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. https://doi.org/10.1081/AGB-100002173
  21. G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520. https://doi.org/10.1016/S0021-8693(03)00301-6
  22. M. Morse and G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1936), 815-866. https://doi.org/10.2307/2371264
  23. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math.Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  24. L. H. Rowen, Ring Theory, Academic Press, Inc., San Diego, 1991.
  25. A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233 (2000),no. 2, 427-436. https://doi.org/10.1006/jabr.2000.8451

Cited by

  1. On linearly weak Armendariz rings vol.219, pp.4, 2015, https://doi.org/10.1016/j.jpaa.2014.05.039
  2. Polynomial Rings Over Weak Armendariz Rings need not be Weak Armendariz vol.42, pp.6, 2014, https://doi.org/10.1080/00927872.2012.763131